matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationTotale Differenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Totale Differenzierbarkeit
Totale Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totale Differenzierbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:43 Mo 22.06.2009
Autor: Lati

Ich habe hier noch eine sehr ähnliche Aufgabe:
Aufgabe
Sei f : [mm] \IR^2 \to \IR:(x,y) \mapsto \begin{cases} (x^2+y^2)sin(\bruch{1}{\wurzel{x^2+y^2}}), & \mbox{ sonst} \\ 0, & \mbox{ (x,y)=(0,0)} \end{cases} [/mm]

Zeigen Sie f ist im Nullpunkt differenzierbar, aber beide partiellen Ableitungen sind im Nullpunkt unstetig.

Hallo Robert,

vielen Dank erstmal für deine Hilfe!
Ich hab da allerdings noch ein kleines Problem bei einer anderen Aufgabe. Ich hoffe ich nerv dich nicht zu arg;-)
Wie gesagt ist das oben ja eigentlich fast die gleiche Aufgabe wie die davor.
Also ich soll zeigen dass f im Nullpunkt total diffbar ist.
Das muss ich ja wieder über die Definition machen,also diesmal:

[mm] \limes_{h\rightarrow\ 0} \bruch{1}{\parallel h \parallel} \parallel f(x_{0}+h_{x},y_{0}+h_{y})-f(x_{0},y_{0})-Th \parallel [/mm] = 0

Dazu habe ich wieder die partiellen Ableitungen berechnet und erhalte:

[mm] \bruch{\partial f}{\partial x} [/mm] = [mm] 2x(sin(\bruch{1}{\wurzel{x^2+y^2}})-{(x^2+y^2)}^{-1/2}*cos(\bruch{1}{\wurzel{x^2+y^2}})*x [/mm]

[mm] \bruch{\partial f}{\partial y} [/mm] = [mm] 2y(sin(\bruch{1}{\wurzel{x^2+y^2}})-{(x^2+y^2)}^{-1/2}*cos(\bruch{1}{\wurzel{x^2+y^2}})*y [/mm]

Richtig?

So erstmal zur Diffbarkeit:

Ist T = [mm] \vektor{ 2x(sin(\bruch{1}{\wurzel{x^2+y^2}})-{(x^2+y^2)} ^{-1/2}*cos(\bruch{1}{\wurzel{x^2+y^2}})*x \\ 2y(sin(\bruch{1}{\wurzel{x^2+y^2}})-{(x^2+y^2)} ^{-1/2}*cos(\bruch{1}{\wurzel{x^2+y^2}})*y} [/mm] ?

[mm] \limes_{h\rightarrow\ 0} \bruch{1}{\parallel h \parallel} \parallel ((x_{0}+h_{x})^2 +(y_{0}+h_{y})^2)*sin(\bruch{1}{\wurzel{(x_{0}+h_{x})^2 +(y_{0}+h_{y})^2)}}-(x_{0}^2+y_{0}^2)*sin(\bruch{1}{\wurzel{(x_{0}^2+(y_{0}^2)}})-Th \parallel [/mm]

= [mm] \limes_{h\rightarrow\ 0} \bruch{1}{\parallel h \parallel} \parallel ((x_{0}+h_{x})^2 +(y_{0}+h_{y})^2)*sin(\bruch{1}{\wurzel{(x_{0}+h_{x})^2 +(y_{0}+h_{y})^2)}}-(x_{0}^2+y_{0}^2)*sin(\bruch{1}{\wurzel{(x_{0}^2+(y_{0}^2)}})-(\vektor{ 2x_{0}(sin(\bruch{1}{\wurzel{x_{0}^2+y_{0}^2}})-{(x_{0}^2+y_{0}^2)}^{-1/2}*cos(\bruch{1}{\wurzel{x_{0}^2+y_{0}^2}})*x_{0} \\ 2y_{0}(sin(\bruch{1}{\wurzel{x_{0}^2+y_{0}^2}})-{(x_{0}^2+y_{0}^2)}^{-1/2}*cos(\bruch{1}{\wurzel{x_{0}^2+y_{0}^2}})*y_{0}}*\vektor{h_{x} \\ h_{y}}) \parallel [/mm]

Ist das soweit ok so?

Jetzt muss ich irgendwie vereinfachen und man könnte ja z.B. mal den
[mm] sin(\bruch{1}{\wurzel{x_{0}^2+y_{0}^2}}) [/mm] ausklammern, aber irgendwie komm ich dann auch nicht weiter...

Und dann noch zur Stetigkeit:

Ich muss doch zeigen:

[mm] \limes_{x\rightarrow\ x_{0}} [/mm] f'(x) = [mm] f'(x_{0}) [/mm]
Also kann ich doch jetzt hier die 2 partiellen Ableitungen getrennt betrachten oder?

Also für x:

[mm] \limes_{x\rightarrow\ x_{0}} [/mm] f'(x)=
[mm] \limes_{x\rightarrow\ x_{0}} 2x(sin(\bruch{1}{\wurzel{x^2+y^2}})-{(x^2+y^2)}^{-1/2}*cos(\bruch{1}{\wurzel{x^2+y^2}})*x [/mm]

Aber hier hab ich ungefähr das gleiche Problem wie oben. Wie vereinfach ich denn jetzt hier, dass ich keine 0 mehr im Nenner hab?

Und außerdem weiß ich ja eigentlich auch gar nicht wie [mm] f'(x_{0}) [/mm] definiert ist oder ist das 0?

Vielen Dank für deine Mühe!

Grüße

Lati


        
Bezug
Totale Differenzierbarkeit: neuer Thread
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mo 22.06.2009
Autor: Loddar

Hallo Lati!


Bitte eröffne in Zukunft für eine neue (eigenständige) Aufgabe auch einen neuen Thread.


Gruß
Loddar


Bezug
        
Bezug
Totale Differenzierbarkeit: Tip
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:03 Di 23.06.2009
Autor: MarthaLudwig

Hallo Lati!

Versuch es mal mit Matlab.

Hoffe,daß ich helfen konnte.

Grüße Martha

Bezug
        
Bezug
Totale Differenzierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Mi 24.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]