matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenTotale Differenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Totale Differenzierbarkeit
Totale Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totale Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:29 Di 12.01.2016
Autor: jd-mops

Aufgabe
Ist f(x,y)=sqrt(abs(x*y)) in (0,0) differenzierbar?

Die partiellen Ableitungen existieren, sie sind allerdings in (0,0) nicht stetig - soweit, so gut.
Wie gehe ich am besten bei der Untersuchung der (totalen) Differenzierbarkeit in (0,0) vor?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Totale Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 06:14 Mi 13.01.2016
Autor: fred97


> Ist f(x,y)=sqrt(abs(x*y)) in (0,0) differenzierbar?
>  Die partiellen Ableitungen existieren, sie sind allerdings
> in (0,0) nicht stetig - soweit, so gut.
>  Wie gehe ich am besten bei der Untersuchung der (totalen)
> Differenzierbarkeit in (0,0) vor?


Vielleicht mit der Definition ..... ?

$f$ ist in (0,0) total differenzierbar [mm] \gdw [/mm]

[mm] \limes_{(x,y) \rightarrow (0,0)}\bruch{f(x,y)-f(0,0)-xf_x(0,0)-yf_y(0,0)}{\wurzel{x^2+y^2}}=0. [/mm]


FRED

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Totale Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 Mi 13.01.2016
Autor: jd-mops

partielle Ableitungen stetig, somit total Differenzierbar(hinreichend)

aber: nicht notwendig
jetzt habe ich das Problem: die partiellen Ableitungen sind doch in (0,0) gar nicht definiert?!
Damit kann ich doch mit deinem Quotienten gar nichts anfangen.
Was mache ich falsch?

Bezug
                        
Bezug
Totale Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Mi 13.01.2016
Autor: fred97


> partielle Ableitungen stetig, somit total
> Differenzierbar(hinreichend)
>  
> aber: nicht notwendig
>  jetzt habe ich das Problem: die partiellen Ableitungen
> sind doch in (0,0) gar nicht definiert?!

Doch, sie sind def.

Fred

> Damit kann ich doch mit deinem Quotienten gar nichts
> anfangen.
>  Was mache ich falsch?


Bezug
                                
Bezug
Totale Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Mi 13.01.2016
Autor: jd-mops

ich probier´s mal:

auf der x-Achse: f(x,0)=0, auf der y-Achse: f(0,y)=0 - also ist

[mm] f_{x}(0,0)=0 [/mm] sowie [mm] f_{y}(0,0)=0 [/mm] , damit

[mm] \bruch{\wurzel{|xy|} - 0 - x*0 -y*0}{\wurzel{x^2 + y^2}} [/mm] =

[mm] \bruch{\wurzel{|xy|}}{\wurzel{x^2 + y^2}} [/mm]

...und nun stehe ich auf dem Schlauch!?

Bezug
                                        
Bezug
Totale Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:59 Mi 13.01.2016
Autor: jd-mops

...ich mach´mal weiter:
ich nähere mich entlang der 1. WH dem Punkt (0,0), also x=y>0:
dann strebt der von mir angegebene Quotient gegen [mm] \bruch{1}{\wurzel{2}} [/mm]

also ist der GW bei (x,y) gegen (0,0) nicht existent oder aber auf jeden Fall [mm] \not= [/mm] 0

damit ist f im Punkt (0,0) nicht differenzierbar.

Richtig??

Bezug
                                                
Bezug
Totale Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 03:11 Do 14.01.2016
Autor: fred97


> ...ich mach´mal weiter:
>  ich nähere mich entlang der 1. WH dem Punkt (0,0), also
> x=y>0:
>  dann strebt der von mir angegebene Quotient gegen
> [mm]\bruch{1}{\wurzel{2}}[/mm]
>  
> also ist der GW bei (x,y) gegen (0,0) nicht existent oder
> aber auf jeden Fall [mm]\not=[/mm] 0
>  
> damit ist f im Punkt (0,0) nicht differenzierbar.
>  
> Richtig??

Ja

Fred


Bezug
                                                        
Bezug
Totale Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:23 Do 14.01.2016
Autor: jd-mops

Vielen Dank, Fred

Bezug
                
Bezug
Totale Differenzierbarkeit: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:11 Mi 13.01.2016
Autor: jd-mops

zunächst: vielen Dank, Fred

partielle Ableitungen stetig, somit total Differenzierbar(hinreichend)

aber: nicht notwendig
jetzt habe ich das Problem: die partiellen Ableitungen sind doch in (0,0) gar nicht definiert?!
Damit kann ich doch mit deinem Quotienten gar nichts anfangen.
Was mache ich falsch?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]