Totale Diff'barkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:21 So 13.11.2011 | Autor: | cool915 |
Hallo,
ich stehe vor folgendem Problem:
Betrachten Sie die Funktion [mm] \f: \IR^2^\to\IR, [/mm] welche via
[mm] f(x,y):=\begin{cases} (xy)^{-1/3}*(exp(xy)-1), & \mbox{für } x*y\not=0 \mbox{} \\ 0, & \mbox{für } x*y=0 \mbox{} \end{cases}
[/mm]
gegeben ist. Bestimmen Sie alle Punkte in denen f total differenzierbar ist.
Für den D-Bereich [mm] x*y\not=0 [/mm] konnte ich es nachweisen, dass f diff'bar ist. (Ich habe die Stetigkeit der partiellen Ableitungen gezeigt usw.)
Aber wie sieht es mit x*y=0 aus? Wie ist der Ansatz, bzw. irgendwelche Tipps die ich brauche um diese Aufgabe zulösen?
Ich bedanke mich jetzt schon für jede Hilfe:)
|
|
|
|
Hallo,
leider bin ich etwas in Eile; daher nur eine Vermutung:
nicht diffbar für x=0 oder y=0
vielleicht nicht einmal partiell diffbar dafür
das eventuell elementar mit Differentialquotienten zeigen
gruß
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:44 Mo 14.11.2011 | Autor: | cool915 |
Danke, das habe ich mir auch gedacht, aber wie sollte ich das mit dem Produkt (x*y) in der Untersuchung fassen? Soll ich es als (x*y) behandeln oder sollte ich es vielmehr generell als Substitution s=x*y zeigen. Wobei man s als die variable auffassen kann, wo x*y=0 ist?
Würde mich sehr über eine Antwort freuen
|
|
|
|
|
Hallo cool915
tut mir Leid,dass ich gestern so wenig Zeit hatte.
Falls es heute noch interessiert:
Ich würde untersuchen, ob [mm] \bruch{\partial f}{\partial x} [/mm] (0,y) existiert.
Dazu musst Du den Grenzwert
[mm] \limes_{h\rightarrow 0} \bruch{f(0+h;y)-f(0;y)}{h}
[/mm]
untersuchen.
Und der existiert nicht (bzw ist [mm] \infty)
[/mm]
Gruß korbinian
|
|
|
|