matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieTopologien via Basis,Beweis,O3
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Topologien via Basis,Beweis,O3
Topologien via Basis,Beweis,O3 < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologien via Basis,Beweis,O3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Do 17.09.2015
Autor: sissile

Aufgabe
Beim Beweis zu der Charakterisierung von Topologien via Basisi:
"Sei X eine Menge und [mm] \mathcal{B} [/mm] ein Teilsystem von [mm] 2^x, [/mm] dass (B1) und (B3) erfüllt. Dann ist [mm] \mathcal{O}:= \{\bigcup_{i\in I} B_i| B_i \in \mathcal{B}, I \mbox{beliebig}\} [/mm] eine Topologie auf X."
werden die Topologie-Eigenschaften O1) bis O3) bewiesen. Ich verstehe bei (O3) nicht ganz die Anwendung der Distributivität:

Hallo!
(O3)
[mm] O_1,..,O_n \in \mathcal{O} [/mm]

[mm] O_i [/mm] = [mm] \bigcup_{j \in J_i} B_{ij} (B_{ij} \in \mathcal{B}) [/mm]
[mm] \Rightarrow \bigcap_{i=1}^n O_i [/mm] = [mm] \bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}=\bigcup_{j_i \in J_i, i=1,..,n} B_{1 j_1} \cap.. \cap B_{n j_n} [/mm]

Mit (B3) folgt dann, dass [mm] B_{1 j_1} \cap.. \cap B_{n j_n}= \bigcup_{x\in B_{1 j_1} \cap..\cap B_{n j_n}} B_x [/mm]

Der Schritt den ich nicht verstehe ist:
[mm] \bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}=\bigcup_{j_i \in J_i, i=1,..,n} B_{1 j_1} \cap.. \cap B_{n j_n} [/mm]
Es ist das Distributivgesetz, aber wo kommt plötzlich noch ein weiterer Index her und wie sieht die rechte Seite ausgeschrieben aus?
Die linke Seite: [mm] \bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij} [/mm] = [mm] \bigcup_{j \in J_1} B_{1j} \cap \bigcup_{j \in J_2} B_{2j} \cap..\cap \bigcup_{j \in J_n} B_{1n} [/mm]
Ich kann z.B.: [mm] J_1 [/mm] ja auch gar nicht durchnummerieren denn ich weiß ja nicht ob die Menge abzählbar ist.


LG,
sissi

        
Bezug
Topologien via Basis,Beweis,O3: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Do 17.09.2015
Autor: hippias


> Der Schritt den ich nicht verstehe ist:
>  [mm]\bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}=\bigcup_{j_i \in J_i, i=1,..,n} B_{1 j_1} \cap.. \cap B_{n j_n}[/mm]
>  
> Es ist das Distributivgesetz, aber wo kommt plötzlich noch
> ein weiterer Index her und wie sieht die rechte Seite
> ausgeschrieben aus?

Es soll wohl ausgedrueckt werden, dass ueber die Indices von [mm] $1,\ldots, [/mm] n$ vereinigt wird. Schoen finde ich es auch nicht. Vielleicht so: Die linke Seite der Gleichung duerfte klar sein. Wenn [mm] $x\in \bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}$ [/mm] ist, dann gibt es zu jedem [mm] $i\in \{1,\ldots,n\}$ [/mm] ein [mm] $j_{i}\in J_{i}$ [/mm] so, dass [mm] $x\in B_{i,j_{i}}$ [/mm] ist.
Daher wuerde ich eher schreiben, dass [mm] $\bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}= \bigcup_{j\in J_{1}\times\ldots \times J_{n}} B_{1,j_{1}}\cap\ldots\cap B_{n,j_{n}}$ [/mm] gilt.

Beantwortet das Deine Frage?

>  Die linke Seite: [mm]\bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}[/mm]
> = [mm]\bigcup_{j \in J_1} B_{1j} \cap \bigcup_{j \in J_2} B_{2j} \cap..\cap \bigcup_{j \in J_n} B_{1n}[/mm]
> Ich kann z.B.: [mm]J_1[/mm] ja auch gar nicht durchnummerieren denn
> ich weiß ja nicht ob die Menge abzählbar ist.
>  
>
> LG,
>  sissi


Bezug
                
Bezug
Topologien via Basis,Beweis,O3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Do 17.09.2015
Autor: sissile

Danke! Diese Darstellung find ich um einiges besser!
Die andere Richtung der Gleichung wäre dann:
Sei [mm] x\in\bigcup_{j=(j_1,..,j_n) \in J_{1}\times\ldots \times J_{n}} B_{1,j_{1}}\cap\ldots\cap B_{n,j_{n}} [/mm] so folgt [mm] \exists [/mm] j [mm] =(j_1,..,j_n) \in J_1 \times [/mm] .. [mm] \times J_n: x\in B_{1j_1} \cap..\cap B_{n j_n} [/mm]
D.h.  [mm] \exists [/mm] j [mm] =(j_1,..,j_n) \in J_1 \times [/mm] .. [mm] \times J_n: \forall [/mm] i [mm] \in \{1,..,n\}:x\in B_{i j_i} \Rightarrow [/mm] x [mm] \in$ \bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij} [/mm]

Ja ich denke mit der Erklärung verstehe ich es um einges besser!
LG,
sissi

Bezug
                        
Bezug
Topologien via Basis,Beweis,O3: Antwort
Status: (Antwort) fertig Status 
Datum: 09:21 Fr 18.09.2015
Autor: fred97


> Danke! Diese Darstellung find ich um einiges besser!
>  Die andere Richtung der Gleichung wäre dann:
>  Sei [mm]x\in\bigcup_{j=(j_1,..,j_n) \in J_{1}\times\ldots \times J_{n}} B_{1,j_{1}}\cap\ldots\cap B_{n,j_{n}}[/mm]
> so folgt [mm]\exists[/mm] j [mm]=(j_1,..,j_n) \in J_1 \times[/mm] .. [mm]\times J_n: x\in B_{1j_1} \cap..\cap B_{n j_n}[/mm]
> D.h.  [mm]\exists[/mm] j [mm]=(j_1,..,j_n) \in J_1 \times[/mm] .. [mm]\times J_n: \forall[/mm]
> i [mm]\in \{1,..,n\}:x\in B_{i j_i} \Rightarrow[/mm] x [mm]\in$ \bigcap_{i=1}^n \bigcup_{j \in J_i} B_{ij}[/mm]

Das ist O.K.

FRED


>
> Ja ich denke mit der Erklärung verstehe ich es um einges
> besser!
>  LG,
>  sissi


Bezug
                                
Bezug
Topologien via Basis,Beweis,O3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Fr 18.09.2015
Autor: sissile

danke**

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]