matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieTopologie eindeutig?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - Topologie eindeutig?
Topologie eindeutig? < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologie eindeutig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 So 27.04.2008
Autor: Aurelie

Aufgabe
Es sei X eine mene und [mm] (Y,\tau_{y}) [/mm] ein topologischer Raum. Ferner sei [mm] f:X\to [/mm] Y eine Abbildung. Finden sie eine bezüglich Mengeninklusion kleinste Topologie auf X, so dass f astetig wird. Ist diese Topologie eindeutig?  

Hallo Leute,
Die gesuchte kleinste Topologie hab ich mit [mm] \tau_{x}=\{f^{-1}(O)|O\in\tau_{y}\} [/mm] und dies auch bewiesen. Bei der Frage ob die eindeutig ist würde ich denken ja aber ich weiß nicht wie ich da argumentieren kann?

Gruß,
Christine

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Topologie eindeutig?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 So 27.04.2008
Autor: Marcel

Hallo Christine,

> Es sei X eine mene und [mm](Y,\tau_{y})[/mm] ein topologischer Raum.
> Ferner sei [mm]f:X\to[/mm] Y eine Abbildung. Finden sie eine
> bezüglich Mengeninklusion kleinste Topologie auf X, so dass
> f astetig wird. Ist diese Topologie eindeutig?
> Hallo Leute,
>  Die gesuchte kleinste Topologie hab ich mit
> [mm]\tau_{x}=\{f^{-1}(O)|O\in\tau_{y}\}[/mm] und dies auch bewiesen.
> Bei der Frage ob die eindeutig ist würde ich denken ja aber
> ich weiß nicht wie ich da argumentieren kann?

es gibt prinzipiell zwei Möglichkeiten:
1.) Sei [mm] $\mathbb{M}:=\{T: T \mbox{ ist Topologie auf }X \mbox{ so, dass obige Abbildung }f \mbox{ stetig ist}\}$. [/mm]

Zeige:
[mm] $\tau_{x}=\bigcap_{T \in \mathbb{M}}T$ [/mm]

Warum folgt damit auch schon die Eindeutigkeit von [mm] $\tau_{x}$? [/mm]

2.) (Wobei diese Variante eigentlich sehr eng mit 1.) verbunden ist):

Nimm' an, es gäbe eine weitere kleinste Topologie auf $X$ so, dass $f: X [mm] \to [/mm] Y$ stetig wird. Nennen wir diese mal [mm] $T\,'$. [/mm]

Angenommen, es wäre [mm] $T\,' \not= \tau_{x}$. [/mm] Betrachten wir nun mal die neue Topologie [mm] $T_{\mbox{neu}}:=T\,' \cap \tau_{x}$. [/mm] Ich behaupte:
Dann ist [mm] $T_{\mbox{neu}}$ [/mm] eine weitere Topologie, so, dass $f: X [mm] \to [/mm] Y$ stetig ist. Aber [mm] $T_{\mbox{neu}}$ [/mm] ist echt kleiner als [mm] $T\,'$ [/mm] und auch echt kleiner als [mm] $\tau_{x}$, [/mm] weil...? Das ist ein Widerspruch zu...?

P.S.:
Zur Erinnerung:
Der Schnitt zweier Topologien ist wieder eine Topologie.
(Bzw. bei 1.) sollte man sogar besser die Aussage: "Der Schnitt beliebig vieler Topologien ist wieder eine Topologie." benutzen.)

Was Du noch beweisen solltest:
Sind [mm] $T_1$, $T_2 \in \mathbb{M}$, [/mm] so ist [mm] $(T_1 \cap T_2) \in \mathbb{M}$. [/mm] D.h., dass der Schnitt zweier Topologien, bzgl. denen [mm] $\black{f}$ [/mm] stetig ist, auch wieder eine Topologie ist, so dass [mm] $\black{f}$ [/mm] stetig ist.
(Bzw. bei 1.): "Der Schnitt beliebig vieler Topologien, bzgl. denen [mm] $\black{f}$ [/mm] stetig ist, ergibt wieder eine Topologie bzgl. der [mm] $\black{f}$ [/mm] stetig ist.")

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]