matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenTopologie Teilraum=Relativtop
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Topologie Teilraum=Relativtop
Topologie Teilraum=Relativtop < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologie Teilraum=Relativtop: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Mi 21.04.2010
Autor: Jana-stud

Aufgabe
Es sei (M,d) ein metrischer Raum und T [mm] \subset [/mm] M eine Teilmenge. Zeigen Sie:
Die Relativtopologie von T bzgl (M,d) stimmt mit der Topologie von [mm] (T,d^{\sim}) [/mm] überein. [mm] d^{\sim} [/mm] ist dabei die Einschränkung von d auf T.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo liebe Mathe-Helfer,
dies ist eine Aufgabe unseres Übungszettels zur Analysis 2. Leider stehe ich mit Topologien auf dem Kriegsfuß:-(.
Ich habe bis jetzt nur folgenden Ansatz:
Relativtopologie heißt: [mm] U_{T}=\{U \cap T | U offen \}. [/mm] Ich muss also zeigen: Je Punkt aus U [mm] \cap [/mm] T ist ein Punkt aus dem Ball um [mm] d^{\sim}. [/mm]
Ich wähle mir jetzt ein x aus U [mm] \cap [/mm] T. Dann gibt es einen Ball [mm] B_{d}_{r}(x)=\{y \in R: d(x,y) Kann mir jemand von euch helfen!
Viele Grüße,
Jana

        
Bezug
Topologie Teilraum=Relativtop: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Mi 21.04.2010
Autor: fred97


> Es sei (M,d) ein metrischer Raum und T [mm]\subset[/mm] M eine
> Teilmenge. Zeigen Sie:
> Die Relativtopologie von T bzgl (M,d) stimmt mit der
> Topologie von [mm](T,d^{\sim})[/mm] überein. [mm]d^{\sim}[/mm] ist dabei die
> Einschränkung von d auf T.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Hallo liebe Mathe-Helfer,
>  dies ist eine Aufgabe unseres Übungszettels zur Analysis
> 2. Leider stehe ich mit Topologien auf dem Kriegsfuß:-(.
>  Ich habe bis jetzt nur folgenden Ansatz:
>  Relativtopologie heißt: [mm]U_{T}=\{U \cap T | U offen \}.[/mm]


Das ist sehr schlampig !


> Ich muss also zeigen: Je Punkt aus U [mm]\cap[/mm] T ist ein Punkt
> aus dem Ball um [mm]d^{\sim}.[/mm]


Dieser Satz ist völliger Unsinn !


> Ich wähle mir jetzt ein x aus U [mm]\cap[/mm] T. Dann gibt es einen
> Ball [mm]B_{d}_{r}(x)=\{y \in R: d(x,y)
> Das wars leider schon, was ich zu der Aufgabe sagen kann.
> Kann mir jemand von euch helfen!


Wir versuchen wirs mal so:

1. Sei [mm] U_T [/mm] das System der offenen Teilmengen von T bezüglich der Relativtopologie von T .

Frage an Dich: wie sehen die Mengen in  [mm] U_T [/mm] aus ?

2. Sei [mm] U_{\sim} [/mm] das System der offenen Mengen bezüglich der Topologie von $ [mm] (T,d^{\sim}) [/mm] $

Frage an Dich: wie sehen die Mengen in [mm] U_{\sim} [/mm] aus ?

3. Zeige: [mm] U_{\sim}=U_T [/mm]



FRED



>  Viele Grüße,
>  Jana


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]