matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesTopologie-Rand
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Topologie-Rand
Topologie-Rand < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologie-Rand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Di 06.12.2011
Autor: quasimo

Aufgabe
Man bestinne [mm] \partial \IQ [/mm] und [mm] \partial \IZ [/mm] als teilmenge von [mm] \IR [/mm]

Lösungen:
a) [mm] \partial \IQ [/mm] = [mm] \IR [/mm]
b) [mm] \partial \IZ [/mm] = [mm] \IZ [/mm]

a) Ist x rational so liegt in jeder Umgebung von x eine irrationale Zahl. Wäre dann nicht der Rand [mm] \IQ [/mm] ?
Wie argumetiert ihr da?

b) [mm] \forall U_{\varepsilon} [/mm] für x [mm] \in \IZ [/mm] gilt, sie beinhaltet ein Element aus [mm] \IZ [/mm] (das x) und [mm] \IR [/mm] ohne [mm] \IZ [/mm] -> folgt aus archimedischen Prinzip.

Bei den Begründungen bin ich mir unsicher, und für a weiß ich die begründung nicht

Danke
Liebe Grüße

        
Bezug
Topologie-Rand: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Di 06.12.2011
Autor: kamaleonti

Hallo quasimo,
> Man bestinne [mm]\partial \IQ[/mm] und [mm]\partial \IZ[/mm] als teilmenge
> von [mm]\IR[/mm]
>  Lösungen:
>  a) [mm]\partial \IQ[/mm] = [mm]\IR[/mm]
>  b) [mm]\partial \IZ[/mm] = [mm]\IZ[/mm]
>  
> a) Ist x rational so liegt in jeder Umgebung von x eine
> irrationale Zahl. Wäre dann nicht der Rand [mm]\IQ[/mm] ?
>  Wie argumetiert ihr da?

Das folgt aus der Dichtheit der rationalen Zahlen in den reellen Zahlen:

Sei [mm] x\in\IR. [/mm] Dann ist für jedes [mm] \varepsilon>0 [/mm] die Menge [mm] U_{\varepsilon}(x)\cap\IQ [/mm] nichtleer.

>  
> b) [mm]\forall U_{\varepsilon}[/mm] für x [mm]\in \IZ[/mm] gilt, sie
> beinhaltet ein Element aus [mm]\IZ[/mm] (das x) und [mm]\IR[/mm] ohne [mm]\IZ[/mm] ->
> folgt aus archimedischen Prinzip.

Mir ist nicht klar, was du meinst.

Sei [mm] x\in\IR\backslash\IZ. [/mm] Sei [mm] d=\min\{|x-z|:z\in\IZ\}>0 [/mm] der Abstand von x zu [mm] \IZ. [/mm] Dann ist offenbar

      [mm] U_{d/2}(x)\cap\IZ=\emptyset, [/mm]

also [mm] x\notin\partial\IZ. [/mm]


LG

Bezug
                
Bezug
Topologie-Rand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:50 Mi 07.12.2011
Autor: quasimo

genial danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]