matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungTipp
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Tipp
Tipp < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tipp: Stammfunktion
Status: (Frage) beantwortet Status 
Datum: 00:04 Do 15.12.2011
Autor: sunny20

Aufgabe
[mm] \integral_{}^{}{\bruch{sin(x)*cos(x)}{\wurzel{2-2cos(x)}} dx} [/mm]


hey,

irgendwas mache ich falsch...

wenn ich u = cos(x) wähle komme ich nachher auf den Ausdruck - [mm] \integral_{}^{}{\bruch{u}{\wurzel{2-2u}} du} [/mm] an dieser Stelle komme ich nicht weiter ...
und wenn ich u = 2- 2cos(x) wähle komme ich am Ende auf eine Stammfunktion von [mm] -\bruch{1}{6}*(2-2*cos(x))^{3/2}+ \bruch{1}{(2*\wurzel{(2-2*cos(x)}}) [/mm]

der erste Term würde Stimmen aber es soll jedoch
[mm] -(1/6)*(2-2*cos(x))^{3/2}+\wurzel{2-2*cos(x)} [/mm]

als Ergebnis rauskommen. Was mache ich falsch?


Lg

        
Bezug
Tipp: Antwort
Status: (Antwort) fertig Status 
Datum: 01:02 Do 15.12.2011
Autor: Hasenfuss

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hossa ;)

Ich würde das Gerät erstmal mit Hilfe der Additionstheoreme

$\sin(x\pm y)=\sin x\,\cos y\pm\sin y\,\cos x$
$\cos(x\pm y)=\cos x\,\cos y\mp\sin x\,\sin y$

und mit Hilfe des "trigonometrischen Pythagoras"

$\sin^2x+\cos^2x=1$

wie folgt vereinfachen:

$1-\cos x=1-\left(\cos^2\frac{x}{2}-\sin^2\frac{x}{2}\right)=\left(1-\cos^2\frac{x}{2}\right)+\sin^2\frac{x}{2}\right)=2\sin^2\frac{x}{2}$

$\sin x\,\cos x=2\sin\frac{x}{2}\,\cos\frac{x}{2}\,\left(\cos^2\frac{x}{2}-\sin^2\frac{x}{2}\right)=2\sin\frac{x}{2}\,\cos\frac{x}{2}\,\left(1-2\sin^2\frac{x}{2}\right)$

$\Longrightarrow\quad\frac{\sin x\,\cos x}{\sqrt{2-2\cos x}}=\frac{2\sin\frac{x}{2}\,\cos\frac{x}{2}\,\left(1-2\sin^2\frac{x}{2}\right)}{\sqrt{4\sin^2\frac{x}{2}}}=\cos\frac{x}{2}-2\cos\frac{x}{2}\sin^2\frac{x}{2}$

Dies zu integrieren ist titti...

Bezug
                
Bezug
Tipp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:00 Do 15.12.2011
Autor: sunny20

Hi,
könnte ich denn auch direkt substituieren wie ich es oben versucht habe ? Weil ich meine der erste Term passt ja ... vlt ist mir ein Fehler im zweiten unterlaufen .

LG

Sunny


Bezug
                        
Bezug
Tipp: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Do 15.12.2011
Autor: Diophant

Hallo,

was da genau schief gelaufen ist, kann man nur sagen, wenn du deine Rechnung angibst. Meiner Ansicht nach geht es mit Substitution, auch mit der von dir gewählten. Einfacher jedoch wäre meiner Ansicht nach

u=2-2*cos(x) mit [mm] dx=\bruch{du}{2*sin(x)} [/mm]

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]