matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikTilgungsplan Annuitätenkredit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Finanzmathematik" - Tilgungsplan Annuitätenkredit
Tilgungsplan Annuitätenkredit < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tilgungsplan Annuitätenkredit: Restschuld wird nicht Null
Status: (Frage) beantwortet Status 
Datum: 14:36 So 12.08.2007
Autor: stefan-s

Hallo,

für das Beispiel eines gewöhnlichen Bank-Darlehens von 100.000 Eur, 5 Jahre Laufzeit, 10% Zinsen und monatlicher Rückzahlung möchte ich den Tilgungsplan mit konstanter Annuität erstellen. Während die Excelsche RMZ-Funktion auf fünf Cent genau das Darlehen nach den 60 Monaten abgezahlt hat (Annuität = Eur 2124,71), führt meine eigene Berechnung nach untenstehenden Formeln zu einer Annuität von Eur 2101,97 ; das Darlehen ist folglich nach 60 Monaten noch mit Eur 1760,78 offen. Ich finde den Fehler nicht; sind das eventuell "nur" Rundungsdifferenzen oder Ungenauigkeit?

[mm]r=\bruch {R}{m+\bruch{i}{2}*(m-1)} [/mm]

(nachschüssige Zahlung)

wobei

[mm]R=Kreditsumme*\bruch{q^n*(q-1)}{q^n-1} [/mm]

[mm]q=1+i [/mm]
[mm]m=12[/mm]



Viele Grüße
Stefan

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tilgungsplan Annuitätenkredit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 So 12.08.2007
Autor: Josef

Hallo Stefan,

>  
> für das Beispiel eines gewöhnlichen Bank-Darlehens von
> 100.000 Eur, 5 Jahre Laufzeit, 10% Zinsen und monatlicher
> Rückzahlung möchte ich den Tilgungsplan mit konstanter
> Annuität erstellen. Während die Excelsche RMZ-Funktion auf
> fünf Cent genau das Darlehen nach den 60 Monaten abgezahlt
> hat (Annuität = Eur 2124,71), führt meine eigene Berechnung
> nach untenstehenden Formeln zu einer Annuität von Eur
> 2101,97 ; das Darlehen ist folglich nach 60 Monaten noch
> mit Eur 1760,78 offen. Ich finde den Fehler nicht; sind das
> eventuell "nur" Rundungsdifferenzen oder Ungenauigkeit?
>
> [mm]r=\bruch {R}{m+\bruch{i}{2}*(m-1)}[/mm]
>  
> (nachschüssige Zahlung)
>  
> wobei
>  
> [mm]R=Kreditsumme*\bruch{q^n*(q-1)}{q^n-1}[/mm]
>  
> [mm]q=1+i[/mm]
>  [mm]m=12[/mm]
>  


Die Annuität beträgt:

[mm] 100.000*\bruch{1,1^5*0,1}{1,1^5 -1} [/mm] = 26.379,75

Monatliche Rate beträgt:

[mm] \bruch{26.379,75}{12+\bruch{0,1}{2}*11} [/mm] = 2.101,97


Restschuld nach 5 Jahren:

[mm] 100.00*1,1^5 [/mm] - [mm] 2.101,97*(12+\bruch{0,1}{2}*11)*\bruch{1,1^5 -1}{0,1} [/mm] = 0,17 (Rundungsfehler?)

Viele Grüße
Josef

Bezug
                
Bezug
Tilgungsplan Annuitätenkredit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:48 Di 14.08.2007
Autor: stefan-s

Hallo Josef,
zunächst vielen Dank für die Antwort!

Aber wieso bringt mir die RMZ-Funktion von Excel wie auch z.B. der online Kreditkalkulator meiner Hausbank eine monatliche Belastung von 2124,71?

Stelle ich beide Tilgungspläne nebeneinander, so verbleibt der mit der vorgenannten Annuität nach 60 Monaten bei einer Restschuld von fünf Cent, während der Plan mit 2101,97 nach 60 Monaten noch bei 1760,92 steht?

[Annuität nach der Berechnung in Deiner Antwort:]

Monat Annuität Zinsen Tilgung Restschuld
1 2.101,97 833,34 1.268,63 98.731,37
2 2.101,97 822,77 1.279,20 97.452,17
3 2.101,97 812,11 1.289,86 96.162,31

58 2.101,97 66,00 2.035,97 5.883,89
59 2.101,97 49,04 2.052,93 3.830,96
60 2.101,97 31,93 2.070,04 1.760,92


[Annuität nach Plan der Hausbank / Excel RMZ():]

Monat Annuität Zinsen Tilgung Restschuld
1 2.124,71 833,34 1.291,37 98.708,63
2 2.124,71 822,58 1.302,13 97.406,50
3 2.124,71 811,73 1.312,98 96.093,52

58 2.124,71 52,25 2.072,46 4.196,83
59 2.124,71 34,98 2.089,73 2.107,10
60 2.124,71 17,56 2.107,15 -0,05


Grüße
Stefan

Bezug
                        
Bezug
Tilgungsplan Annuitätenkredit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Di 14.08.2007
Autor: VNV_Tommy

Hallo stefn-s!

Zunächst ein herzliches [willkommenmr]

> Hallo Josef,
>  zunächst vielen Dank für die Antwort!
>  
> Aber wieso bringt mir die RMZ-Funktion von Excel wie auch
> z.B. der online Kreditkalkulator meiner Hausbank eine
> monatliche Belastung von 2124,71?
>  
> Stelle ich beide Tilgungspläne nebeneinander, so verbleibt
> der mit der vorgenannten Annuität nach 60 Monaten bei einer
> Restschuld von fünf Cent, während der Plan mit 2101,97 nach
> 60 Monaten noch bei 1760,92 steht?

Ich hab das ganze mal durchgerechnet und komme auf eine Annuität von 2124,704411 Euro. Das entspricht m.E. der Annuität, welche dir Excel ausspuckt.

Ich habe folgendes gerechnet:

[mm] A=KW*\bruch{i*q^{n}}{q^{n}-1} [/mm]

Es gilt:
KW=100.000 Euro
[mm] \overline{i}=0,1 \hat= [/mm] 10 Prozent (Zinsen pro JAHR)
i= [mm] \bruch{\overline{i}}{12}=0,0083333333333333 \hat= [/mm] 0,83333333333333 Prozent (Zinsen pro MONAT)
n= 5 Jahre [mm] \hat= [/mm] 60 Monate
q=1+i=1+0,0083333333333333=1,0083333333333333

[mm] A=100.000*\bruch{0,0083333333333333*1,0083333333333333^{60}}{1,0083333333333333^{60}-1} [/mm]

Wenn du das berechnest erhälst du die gewünschte monatliche Rate von ca. 2124,71 Euro.

Ich nehme an, ihr/du habt/hast vergessen den jährlichen Zins auf die Monate runterzurechnen. ;-)

Gruß,
Tommy

Bezug
                                
Bezug
Tilgungsplan Annuitätenkredit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:46 Di 14.08.2007
Autor: stefan-s

Hallo Tommy,

ich habe den Zins ja mit der Formel

[mm]r=\bruch {R}{m+\bruch{i}{2}\cdot{}(m-1)} [/mm]

gezwölftelt, was wohl aber offensichtlich zu ungenau ist.

Vielen Dank!!
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]