matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikTilgung und Zinsen, Annuität?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Finanzmathematik" - Tilgung und Zinsen, Annuität?
Tilgung und Zinsen, Annuität? < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tilgung und Zinsen, Annuität?: Idee,Tipp
Status: (Frage) beantwortet Status 
Datum: 19:34 Sa 22.10.2011
Autor: MiKeMaX

Aufgabe
Eine Hypothek von 10000 Euros wird am Ende jeden Jahres mit 7% verzinst. Es wird vereinbart, am Ende jeden Jahres einen gleich bleibenden Betrag x an die Bank zu zahlen, der sich aus Tilgung und Zinsen zusammensetzt. Wie hoch muss x sein, so dass die Hypothek am Ende des 5. Jahres abbezahlt ist?

Also unser Prof hat uns dafür schon einen Tipp gegeben, den ich aber nicht ganz nachvollziehen kann. Vielleicht wird die Aufgabe ja direkt für mich verständlich, wenn ich dahinter komme, was unser Prof aufgeschrieben hat. Ich darf glaube ich nicht einfach eine Formel verwenden, sondern muss das schon "aufbauen" wie ich's rechnen würde und evtl. nach dem 2. oder 3. Jahr dann daraus auf eine allgemeine Formel schließen (Beweis nicht notwendig).

Sein Tipp:

[mm] x_{k} [/mm] = Schuld am Anfang des k'ten Jahres
Also [mm] x_{1} [/mm] = 10000
[mm] t_{k} [/mm] = Tilgung am Ende des k'ten Jahres
x = [mm] t_{k}+(0,07)*x_{k} [/mm] => [mm] t_{k} [/mm] = [mm] x-(0,07)*x_{k} [/mm] (Also hier verstehe ich nicht was mit [mm] t_{k} gemeint [/mm] ist. Vielleicht weil ich allgemein mit dem Begriff Tilgung nicht so richtig weiß was gemeint ist?)
Also die Gleichung kann ich auch nicht nachvollziehen:
[mm] x_{k+1} [/mm] = [mm] x_{k}-t_{k} [/mm] = [mm] x_{k}-(x-0,07)*x_{k} [/mm] = [mm] (1,07)x_{k} [/mm] -x
(bei diesem "=" bin ich mir nicht sicher, ob das so an der Tafel stand) = [mm] (1,07)((1,07)*x_{k-1}-x)-x [/mm]
...
...
...
Es muss gelten [mm] x_{6} [/mm] = 0

Also der Ansatz ist ja eigentlich gegeben, aber ich verstehe ihn nicht :(

Vielleicht kann mir das ja nochmal jemand mit "anderen Worten" erklären

Grüße


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Tilgung und Zinsen, Annuität?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Sa 22.10.2011
Autor: MathePower

Hallo MiKeMaX,

> Eine Hypothek von 10000 Euros wird am Ende jeden Jahres mit
> 7% verzinst. Es wird vereinbart, am Ende jeden Jahres einen
> gleich bleibenden Betrag x an die Bank zu zahlen, der sich
> aus Tilgung und Zinsen zusammensetzt. Wie hoch muss x sein,
> so dass die Hypothek am Ende des 5. Jahres abbezahlt ist?
>  Also unser Prof hat uns dafür schon einen Tipp gegeben,
> den ich aber nicht ganz nachvollziehen kann. Vielleicht
> wird die Aufgabe ja direkt für mich verständlich, wenn
> ich dahinter komme, was unser Prof aufgeschrieben hat. Ich
> darf glaube ich nicht einfach eine Formel verwenden,
> sondern muss das schon "aufbauen" wie ich's rechnen würde
> und evtl. nach dem 2. oder 3. Jahr dann daraus auf eine
> allgemeine Formel schließen (Beweis nicht notwendig).
>  
> Sein Tipp:
>  
> [mm]x_{k}[/mm] = Schuld am Anfang des k'ten Jahres
>  Also [mm]x_{1}[/mm] = 10000
>  [mm]t_{k}[/mm] = Tilgung am Ende des k'ten Jahres
>  x = [mm]t_{k}+(0,07)*x_{k}[/mm] => [mm]t_{k}[/mm] = [mm]x-(0,07)*x_{k}[/mm] (Also

> hier verstehe ich nicht was mit [mm]t_{k} gemeint[/mm] ist.
> Vielleicht weil ich allgemein mit dem Begriff Tilgung nicht
> so richtig weiß was gemeint ist?)
>  Also die Gleichung kann ich auch nicht nachvollziehen:
>  [mm]x_{k+1}[/mm] = [mm]x_{k}-t_{k}[/mm] = [mm]x_{k}-(x-0,07)*x_{k}[/mm] = [mm](1,07)x_{k}[/mm]
> -x

Nach dem 2. Gleichheitszeichen muss es doch heißen:

[mm]x_{k}-(x-0,07*x_{k}\blue{)}[/mm]


>  (bei diesem "=" bin ich mir nicht sicher, ob das so an der
> Tafel stand) = [mm](1,07)((1,07)*x_{k-1}-x)-x[/mm]
>  ...


Setze doch einfach die Definition ein:

[mm]x_{k+1}=1,07*x_{k}-x=1,07*\left(1,07*x_{k-1}-x\right)-x[/mm]

Das ist dann, bis auf die Klammern, das was an der Tafel stand.


>  ...
>  ...
>  Es muss gelten [mm]x_{6}[/mm] = 0
>  
> Also der Ansatz ist ja eigentlich gegeben, aber ich
> verstehe ihn nicht :(
>
> Vielleicht kann mir das ja nochmal jemand mit "anderen
> Worten" erklären
>  
> Grüße
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]