matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTaschenrechnerTi83 Solver = nur eine Lösung?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Taschenrechner" - Ti83 Solver = nur eine Lösung?
Ti83 Solver = nur eine Lösung? < Taschenrechner < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Taschenrechner"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ti83 Solver = nur eine Lösung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Fr 07.04.2006
Autor: Anatoli2k

Ich besitze einen Ti83 und werde in wenigen Wochen mein Abi mit Mathe als P3 schreiben. Beim Wiederholen des Stoffs ist mir aufgefallen, dass wir einige Gleichungen hatten, wie beispielsweise 0=x³-2x²-x+3. In der Schule haben wir die mit dem Ti83-Solver berechnet und 3 Ergebnisse bekommen (x1=-1,11, x2=1,25 und x3=2,86). Ich weiss nur leider nichtmehr wie, eigentlich kann man mit dem Solver (so wie ich es in Erinnerung habe) nur eine Lösung errechnen (in diesem Falle bekam ich 1,25 raus). Ich brauche aber alle 3 Lösungen. Wie geht das mit dem Solver?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ti83 Solver = nur eine Lösung?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Fr 07.04.2006
Autor: ardik

Hi Anatoli,

> beispielsweise 0=x³-2x²-x+3. In der Schule haben wir die
> mit dem Ti83-Solver berechnet und 3 Ergebnisse bekommen
> (x1=-1,11, x2=1,25 und x3=2,86). Ich weiss nur leider
> nichtmehr wie, eigentlich kann man mit dem Solver (so wie
> ich es in Erinnerung habe) nur eine Lösung errechnen (in
> diesem Falle bekam ich 1,25 raus). Ich brauche aber alle 3
> Lösungen. Wie geht das mit dem Solver?

Ob (und ggf. wie) das mit dem Solver geht, findest Du in einer meiner späteren Mitteilungen, aber:

"Normalerweise" machst Du dann mit der Polynomdivision weiter und reduzierst so das Polynom dritten Grades zu einem zweiten Grades, dass sich ja dann mit Standardverfahren (p-q-Formel etc.) Lösen lässt:

[mm] $(x^3 [/mm] - [mm] 2x^2 [/mm] - x + 3) : (x - 1,25) = [mm] x^2 [/mm] + ...$

Allgemein:
$f(x) : (x - [mm] x_1) [/mm] = ...$
wobei [mm] $x_1$ [/mm] dieser erste gefundene / "geratene" Nullstelle ist.

Zur Polynomdivision:
[]Online Mathebuch
[]Arndt Brünners Seiten (imho genial!)

Falls Du damit Schwierigkeiten hast, frag nach! :-)

Schöne Grüße,
ardik

Bezug
        
Bezug
Ti83 Solver = nur eine Lösung?: Ergebnisse richtig?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:54 Fr 07.04.2006
Autor: prfk

Ich hab gerade mal die Aufgabe nachgerechnet. Kann es sein, dass deine Nullstellen nicht richtig sind?

Ich bekomme eine reelle und 2 komplexe Nullstellen heraus (Sagt zu mindest mein Taschenrechner) Und bei der Probe mit deinen Werten, komme ich nicht auf Null...

Mein Taschenrechner sagt:

[mm] X_{1} [/mm] = -1,1479
[mm] X_{2} [/mm] = +1,5739+0,3689i
[mm] X_{3} [/mm] = +1,5739-0,3689i

EDIT: Ich hab die Funktion gerade mal mit nem Programm visualisiert. Sie hat im reellen tatsächlich nur eine Nullstelle. Wenn dein Taschenrechner also nur eine ausgibt, ist das voll in ordnung. Sofern es die ist, die ich angegeben hab, denn die stimmt. (Sagt mein Program und mein Taschenrechner :) )

Bezug
                
Bezug
Ti83 Solver = nur eine Lösung?: Funktion lautet anders!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 Fr 07.04.2006
Autor: ardik

Hallo,

Deine Nullstellen (wenn man sie als gerundet ansieht) passen zu dieser Funktion:

$f(x) = [mm] x^3 [/mm] - [mm] 3x^2 [/mm] + x + 4$

  [mm] x_1 = -1,1149075414767557[/mm]
  $ [mm] x_2 [/mm] =  1,2541016883650524$
  $   [mm] x_3 [/mm] =  2,8608058531117035$

Wenn Du im Solver bei z.B. 0 startest, wirst Du die zweite Nullstelle finden.
Wenn Du bei -2 startest, die erste etc.

Bezug
                        
Bezug
Ti83 Solver = nur eine Lösung?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 Fr 07.04.2006
Autor: Anatoli2k

Stimmt, ich habe mich irgendwie in der Zeile vertan. Tud mir Leid. Danke erstmal für alle Antworten, ich werde mir das nochmal genau anschauen.



Bezug
        
Bezug
Ti83 Solver = nur eine Lösung?: Solver
Status: (Antwort) fertig Status 
Datum: 19:53 Fr 07.04.2006
Autor: ardik

Mit dem Solver kann man immer nur eine Lösung auf einmal berechnen.
Er bricht ab, wenn er eine gefunden hat.
Wenn Du dann aber den Startwert entsprechend veränderst, kannst Du weitere Lösungen finden.
Es ist u.U. empfehlenswert, sich den Graphen erstmal zeichnen zu lassen, um eine Vorstellung zu haben, wo man nach den Nullstellen suchen sollte. Evtl. kann man diese dann auch schon mit trace etc. finden.

Meine []Quelle

---

Übrigens hat prfk recht, Deine Nullstellen passen nicht zu Deiner Funktionsgleichung...

Schöne Grüße,
ardik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Taschenrechner"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]