matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikThermodynamik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Physik" - Thermodynamik
Thermodynamik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Thermodynamik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Fr 21.04.2006
Autor: Kuebi

Aufgabe
Ein Behälter mit einem Volumen [mm] V_{1} [/mm] enthält [mm] n_{1} [/mm] mol eines idealen, einatomigen Gases unter einem Druck [mm] p_{1}. [/mm] Ein zweiter Behälter mit Volumen [mm] V_{2} [/mm] enthält [mm] n_{2} [/mm] mol desselben Gases mit einem Druck [mm] p_{2}. [/mm] Die beiden Gefäße werden nun in thermischen Kontakt gebracht, so daß Wärme ausgetauscht werden kann. Die Volumina werden konstant gehalten, und es findet kein Stoffaustausch statt. Bestimmen Sie Druck und Temperatur in beiden Behältern im Gleichgewichtsfall.

Hallo ihr!

Einmal mehr hab ich so meine Schwierigkeiten mit der Thermodynamik. Zu obiger Aufgabe hab ich mir so meine Gedanken gemacht, aber beim Rechnen drehe ich mich stets im Kreis.

Folgendes habe ich mir gedacht:

Für jeden Behälter ist bekannt: V,n,p

Da die allg. Gaskonstante natürlich bekannt ist kann ich für jeden Behälter die dort vorherschende Tempertatur ausrechnen.

Nun habe ich gedacht, ist die Temperaturangleichung in jedem Behälter ja ein isochorer Prozess. Folglich kann ich sagen für jeden Behälter gilt p/T = konstant bzw. sowohl  [mm] \bruch{p_{1}_{vorher}}{T_{1}_{vorher}}=\bruch{p_{1}_{nachher}}{T_{1}_{nachher}} [/mm] als auch [mm] \bruch{p_{2}_{vorher}}{T_{2}_{vorher}}=\bruch{p_{2}_{nachher}}{T_{2}_{nachher}}. [/mm]

Gemäß der Aufgabenstellung und folglich aus dem nullten HS der Thermodynamik ist ja [mm] T_{1}_{nachher} [/mm] = [mm] T_{2}_{nachher} [/mm] := T.

Jetzt habe ich versucht mit hin und herschieben der Gleichungen und der für jeden Behälter für vorher und nachher aufgestellten Gasgleichungen zu einem Ergebnis zu kommen. Leider kürzen sich die entscheidenden Größen stets weg! :-(

Bin ich mit meiner Idee völlig auf dem Holzweg oder steh' ich nur aufm Schlauch?

Vielen Dank für eure Ideen und Hilfestellungen!

Vlg, Kübi

        
Bezug
Thermodynamik: spez. Wärme
Status: (Antwort) fertig Status 
Datum: 15:28 Fr 21.04.2006
Autor: leduart

Hallo Kuebi,
Du hast wahrscheinlich bei deinen Gleichungen den Wärmeaustausch weggelassen. Was 1 an Wärme aufnimmt muss 2 an Wärme abgeben! n1*c*(T-T1)=n2*c*(T2-T);
c bekannt bei festem Vol und einatomigen Gas
Gruss leduart

Bezug
                
Bezug
Thermodynamik: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:45 Fr 21.04.2006
Autor: Kuebi

Hallo du!

Vielen Dank für die Hilfe! Ja, mit dieser Tatsache habe ich tatsächlich noch nicht gerechnet.
Sie macht ja jetzt auch die isochore Formel p/T=konstant überflüssig, da ich sofort nach Umschreiben von n1*c*(T-T1)=n2*c*(T2-T) auf T = ... damit in die allg. Gasgleichungen für die Zustände im thermischen Gleichgewicht gehen und kann und somit dann auch gleich zu den Drücken komme. (Hoffe das stimmt jetzt!)

Nur noch eine Sache: Da ich ja nicht weiß welcher Behälter Wärme aufnimmt und welcher sie abgibt, ist es korrekt die Formel wie folgt abzuwandeln: n1*c*|(T-T1)|=n2*c*|(T2-T)|? Dann sollte ja eigentlich nichts mehr schiefgehen!?

Lg, Kübi

Bezug
                        
Bezug
Thermodynamik: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Fr 21.04.2006
Autor: leduart

Hallo Kuebi
nach meiner Meinung ist die Gl, so wie ich sie geschrieben hab immer richtig, weil ich ja die Temperaturdifferenzen mal + ma- genommen hab. dann sind beide pos oder beide neg.
mit betragsgl. ists zwar auch richtig, aber schwerer zu manipulieren!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]