matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungTextaufgaben zu Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Textaufgaben zu Integral
Textaufgaben zu Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Textaufgaben zu Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 So 23.11.2008
Autor: nunu

Hallo ihr
ich bräuchte mal Hilfe bei 2 AUfgaben.
Die erste lautet:
Bestimme die Parallele zur 1.Achse, die mit dem Graphen von f(x) [mm] =x^2 [/mm] eien Fläche mit dem Flächeninhalt [mm] \bruch{8}{3} \wurzel{2} [/mm] einschließt.

Mein Problem ist das ich dann irgendwie 2 UNbekannte habe?
Mein INtegral sieht wie folgt aus:
[mm] \integral_{0}^{b} g(x)-x^2\, [/mm] dx = [mm] \bruch{8}{3} \wurzel{2} [/mm]

Irgnedwie kenne ich aber die Rechte Grenze nicht und auch die 2 Funktion die Parallele nicht
Achso als INformation noch, ich sitze in einem Mathe LK, der den Texas Instruments voyage 200 benutzt.

Und meine 2 Aufgabe mit der ich leider so gar nichts anfangen kann ist:

Welche Steigung m muss eine Gerade durch den KOordinaten Ursprung haben, damit sie mit dem Graphen von f mit f(x) [mm] =x^2 [/mm] eine Fläche mit dem Flächeninhalt 10 2/3 einschließt

        
Bezug
Textaufgaben zu Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 So 23.11.2008
Autor: Tyskie84

Hallo,

warum ist deine untere Grenze 0? Ist das so vorgegeben oder hast du das so gewählt? Wenn ja dann lese ich aus der Aufgabe nicht heraus dass die untere Grenze 0 sein muss.

[hut] Gruß

Bezug
        
Bezug
Textaufgaben zu Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 So 23.11.2008
Autor: schachuzipus

Hallo nunu,

> Hallo ihr
>  ich bräuchte mal Hilfe bei 2 AUfgaben.
>  Die erste lautet:
>  Bestimme die Parallele zur 1.Achse, die mit dem Graphen
> von f(x) [mm]=x^2[/mm] eien Fläche mit dem Flächeninhalt
> [mm]\bruch{8}{3} \wurzel{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

einschließt.

>
> Mein Problem ist das ich dann irgendwie 2 UNbekannte habe?

Nein, nenne doch mal die Parallele $y=a$

Wo schneidet die den Graphen von f(x)=x^2?

An der Stelle $x=...$

Damit ergibt sich dann das Integral $\int\limits_{0}^{...}(a-x^2) \ dx}$

Evtl. im Betrag

EDIT: nach Tyskies Hinweis ist's mir auch aufgefallen ;-)

Die Parallele $y=a$ hat mit der Parabel f(x)=x^2 2 Schnittpunkte, das sind deine beiden Integrationsgrenzen, das Integral ist symmetrisch zur y-Achse, also kommt der doppelte Wert des zuerst von mir angegebenen Integrals heraus, damit ergibt sich auch ein "schöneres" a ;-)

EDIT Ende

>  Mein INtegral sieht wie folgt aus:
>  [mm]\integral_{0}^{b} g(x)-x^2\,[/mm] dx = [mm]\bruch{8}{3} \wurzel{2}[/mm]

das $g(x)$ kannst du viel einfacher darstellen, siehe oben, es ist doch ne Konstante ...

>  
> Irgnedwie kenne ich aber die Rechte Grenze nicht und auch
> die 2 Funktion die Parallele nicht
> Achso als INformation noch, ich sitze in einem Mathe LK,
> der den Texas Instruments voyage 200 benutzt.

Wozu das?

Das ist per Hand in der Zeit gelöst, die du benötigst, den Kram einzutippen, lass den TR also beiseite ;-)

>  
> Und meine 2 Aufgabe mit der ich leider so gar nichts
> anfangen kann ist:
>  
> Welche Steigung m muss eine Gerade durch den KOordinaten
> Ursprung haben, damit sie mit dem Graphen von f mit f(x)
> [mm]=x^2[/mm] eine Fläche mit dem Flächeninhalt 10 2/3 einschließt  

Wie sieht eine allg. Ursprungsgerade aus?

$g(x)=...$

Die hat mit [mm] $f(x)=x^2$ [/mm] außer 0 den weitern Schnittpunkt $x=....$

Das gibt dir die obere Integrationsgrenze

[mm] $\int\limits_{x=0}^{x=...}{(g(x)-f(x)) \ dx}$ [/mm]

Damit sollte es klappen, oder?

LG

schachuzipus




Bezug
                
Bezug
Textaufgaben zu Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 So 23.11.2008
Autor: nunu

Hm also die erste Aufgabe das versteh ich noch nicht so, ganz das sind dann ja irgnedwie trotzdem noch 2 UNbekannte und wie soll ich das dann mit der Hand lösen?

Bezug
                        
Bezug
Textaufgaben zu Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 So 23.11.2008
Autor: schachuzipus

Hallo nochmal,

> Hm also die erste Aufgabe das versteh ich noch nicht so,
> ganz das sind dann ja irgnedwie trotzdem noch 2 UNbekannte [kopfkratz3]
> und wie soll ich das dann mit der Hand lösen?

Verstecke den TR ganz oben auf dem Schrank, so dass du nicht mehr dran kommst und mache dir eine SKIZZE !!!

So ganz per Hand mit Bleistift und Geodreieck

Dann zeiche die Parabel [mm] f(x)=x^2 [/mm] ein und eine Parallele zur x-Achse, etwa $y=3$ (allg. ist das unser a)

Die hat mit der Parabel zwei Schnittpunkte [mm] $x_1$ [/mm] und [mm] $x_2$, [/mm] das sind deine Integrationsgrenzen, integrieren musst du über die Differenzfunktion.

Berechne also erstmal die Schnittpunkte, dann siehst du's selbst

Aber ohne den Kack TR, sonst lernst du das nicht!

Erstmal verstehen, wie es geht, der TR kann dir dann später mal komplizierte Rechnungen abnehmen, aber diese ist kinderleicht!

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]