matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenTextaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Textaufgabe
Textaufgabe < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Textaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Mo 14.02.2011
Autor: Masseltof

Aufgabe
Eine Kupferkugel wird auf 100°C erhitzt und zur Zeit t=0 in Wasser getaucht, das auf einer Temperatur von 30°C gehalten wird. Gemäß des Newton'schen Gesetzes der Abkühlung ist die Änderungsrate der Temperatur der Kupferkugel T' proportional zum Temperaturunterschied zwischen Kupferkugel und Wasser. Es gilt also

[mm] T'\,=\,k\,(T-30)\,, [/mm]

mit einer Proportionalitätskonstante [mm] k\,. [/mm]



Bestimmen Sie die Lösung der Differentialgleichung

[mm] T'\,=\,k\,(T-30)\,,\qquad [/mm] T(0)=100

in Abhängigkeit von [mm] k\,. [/mm]



Nach 3 min im Wasser ist die Temperatur der Kugel auf 70°C gesunken, d.h. [mm] T(3)\,=\,70\,. [/mm]



Bestimmen Sie die Proportionalitätskonstante [mm] k\, [/mm] und geben Sie das Ergebnis auf vier Nachkommastellen gerundet an.

Antwort: [mm] \qquad k\,=\, [/mm]



Rechnen Sie mit dem gerundeten Ergebnis für k weiter und geben Sie die alle weiteren Ergebnisse auf eine Nachkommastelle gerundet an.



Nach 5 min beträgt die Temperatur der Kugel

°C,

und nach 10 min beträgt die Temperatur der Kugel

°C.



Nach welcher Zeit hat sich die Kupferkugel auf 31°C abgekühlt?

Antwort: [mm] \qquad [/mm] Nach Minuten.


Hallo.

Ich soll die oben beschriebene Textaufgabe lösen und weiß nicht so recht weiter.

Gegeben ist T'=k(T-30) [mm] \Rightarrow [/mm] T'=kT-30k
Wobei T eine Funktion darstellt->T(x), so meine Vermutung.
Ferner weiß man, dass k eine Konstante ist.

Die Differentialgleichung soll lauten:
T'=k*(T-30) T(0)=100
und zwar in Abhängigkeit von k.

Wenn es heißen würde:
T'=T so wäre die gesuchte Funktion [mm] e^x=T [/mm]
Würde es heißen T'=T*k so müsste die Funktion [mm] T=e^{kx} [/mm] lauten.

Nun lautet die Funktion aber T'=k*T-30k und hier komme ich gerade nicht weier.
Ich dachte an [mm] T=e^{xk}-30kx [/mm]
Das würde abgeleitet k*e^xk-30k ergeben, wäre damit aber nicht in der Form T'=k*(T-30)

Habt ihr einen Tip?

Viele Grüße und danke im Voraus.

        
Bezug
Textaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Mo 14.02.2011
Autor: MathePower

Hallo Masseltof,

> Eine Kupferkugel wird auf 100°C erhitzt und zur Zeit t=0
> in Wasser getaucht, das auf einer Temperatur von 30°C
> gehalten wird. Gemäß des Newton'schen Gesetzes der
> Abkühlung ist die Änderungsrate der Temperatur der
> Kupferkugel T' proportional zum Temperaturunterschied
> zwischen Kupferkugel und Wasser. Es gilt also
>  
> [mm]T'\,=\,k\,(T-30)\,,[/mm]
>  
> mit einer Proportionalitätskonstante [mm]k\,.[/mm]
>  
>
>
> Bestimmen Sie die Lösung der Differentialgleichung
>  
> [mm]T'\,=\,k\,(T-30)\,,\qquad[/mm] T(0)=100
>  
> in Abhängigkeit von [mm]k\,.[/mm]
>  
>
>
> Nach 3 min im Wasser ist die Temperatur der Kugel auf 70°C
> gesunken, d.h. [mm]T(3)\,=\,70\,.[/mm]
>  
>
>
> Bestimmen Sie die Proportionalitätskonstante [mm]k\,[/mm] und geben
> Sie das Ergebnis auf vier Nachkommastellen gerundet an.
>  
> Antwort: [mm]\qquad k\,=\,[/mm]
>  
>
>
> Rechnen Sie mit dem gerundeten Ergebnis für k weiter und
> geben Sie die alle weiteren Ergebnisse auf eine
> Nachkommastelle gerundet an.
>  
>
>
> Nach 5 min beträgt die Temperatur der Kugel
>  
> °C,
>  
> und nach 10 min beträgt die Temperatur der Kugel
>  
> °C.
>  
>
>
> Nach welcher Zeit hat sich die Kupferkugel auf 31°C
> abgekühlt?
>  
> Antwort: [mm]\qquad[/mm] Nach Minuten.
>  
> Hallo.
>  
> Ich soll die oben beschriebene Textaufgabe lösen und weiß
> nicht so recht weiter.
>  
> Gegeben ist T'=k(T-30) [mm]\Rightarrow[/mm] T'=kT-30k
>  Wobei T eine Funktion darstellt->T(x), so meine
> Vermutung.
>  Ferner weiß man, dass k eine Konstante ist.
>  
> Die Differentialgleichung soll lauten:
>  T'=k*(T-30) T(0)=100
> und zwar in Abhängigkeit von k.
>  
> Wenn es heißen würde:
> T'=T so wäre die gesuchte Funktion [mm]e^x=T[/mm]
>  Würde es heißen T'=T*k so müsste die Funktion [mm]T=e^{kx}[/mm]
> lauten.
>  
> Nun lautet die Funktion aber T'=k*T-30k und hier komme ich
> gerade nicht weier.
>  Ich dachte an [mm]T=e^{xk}-30kx[/mm]
>  Das würde abgeleitet k*e^xk-30k ergeben, wäre damit aber
> nicht in der Form T'=k*(T-30)
>  
> Habt ihr einen Tip?
>  


Die DGL

[mm]T'=k*(T-30)[/mm]

kann z.B. durch []Trennung der Variablen gelöst werden.


> Viele Grüße und danke im Voraus.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]