matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikTest bei Binomialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Test bei Binomialverteilung
Test bei Binomialverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Test bei Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 Mo 23.01.2012
Autor: MattiJo

Aufgabe
Sei [mm] (X_1, [/mm] . . . , [mm] X_n) [/mm] eine Zufallsstichprobe mit [mm] X_i [/mm] ~ Bin(1, p), p [mm] \in [/mm] [0, 1] und n = 10. Weiter sei [mm] \Theta_0 [/mm] = [0, 0.6] und [mm] \Theta_1 [/mm] = (0.6,1]. Für einen Test von [mm] H_0 [/mm] : p ∈ [mm] \Theta_0 [/mm] gegen [mm] H_1 [/mm] : p ∈ [mm] \Theta_1 [/mm] soll die Testvorschrift [mm] \phi(X_1,...,X_n) =1_{(0.7,1]}( \overline{X_n}) [/mm] verwendet werden.

(a) Wieviele Einsen darf eine Realisierung der Stichprobe höchstens enthalten, damit [mm] H_0 [/mm] nicht verworfen wird?

(b) Wie groß ist die Wahrscheinlichkeit für den Fehler erster Art, wenn p = 0.4 ist?

(c) Für welches p [mm] \in \Theta_0 [/mm] ist die Wahrscheinlichkeit für den Fehler erster Art maximal?

(d) Wie groß ist die Wahrscheinlichkeit für den Fehler zweiter Art, falls p = 0.75? Um wieviel verringert sie sich, falls n = 20 und p = 0.75?



Hallo,

mit welchem Test kann ich bei einer Hypothese einen ganzen Bereich testen? Bislang habe ich nur t-Tests mit Nullhypothesen (bzw. Alternativhypothesen) durchgeführt, bei der ganz klar gefragt war: Ist [mm] \mu [/mm] = [mm] \mu_1 [/mm] oder ist [mm] \mu \ne \mu_1 [/mm] ... nun stellt sich aber ja die Frage, liegt p in einem Bereich, also ist p [mm] \in \Theta_i [/mm] ?

Wie kann ich feststellen, wieviel Einsen die Stichprobe maximal enthalten darf? Durch Probieren, oder geht das eleganter?

Vielen Dank bereits im Voraus!

        
Bezug
Test bei Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Mo 23.01.2012
Autor: Walde

Hi Mattijo,

in der Aufgabenstellung ist doch von einer Testvorschrift die Rede. $ [mm] \phi(X_1,...,X_n) =1_{(0.7,1]}( \overline{X_n}) [/mm] $. Wenn die 1 ist, wird [mm] H_0 [/mm] verworfen, wenn sie 0 ergibt, wird [mm] H_0 [/mm] angenommen. Überlege einfach, wann sie 0 ergibt. Daraus kannst auf die maximale Anzahl der 1 in der Stichprobe schließen und mußt nicht raten, sondern kannst es ausrechnen.

LG walde

Bezug
                
Bezug
Test bei Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Mo 23.01.2012
Autor: MattiJo

Danke! Mir hat gefehlt, was diese Testvorschrift genau aussagt.

Demnach muss der Mittelwert [mm] \overline{X_n} \le [/mm] 0,7 sein und damit dürfen bei n=10 maximal sieben Einsen drin sein?

Wie kann ich bei der (b) vorgehen? Was ist da genau mit dem "Fehler erster Art" gemeint?

Bezug
                        
Bezug
Test bei Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Mo 23.01.2012
Autor: Walde

Hi.

Na, das sollte doch in der Vorlesung stehen, wenn in der Übung danach gefragt wird. Ansonsten hilft fast immer Google , zB []hier.

Es ist die (bedingte) Wahrscheinlichkeit, dass [mm] H_0 [/mm] verworfen wird, obwohl [mm] H_0 [/mm] in Wirklichkeit zutreffend ist. Bei dir wird nun von p=0,4 ausgegangen und gesucht ist die W'keit einer Ablehnung, also:

[mm] P_{p=0,4}(\phi(X_1,\ldots,X_n)=1) [/mm] Das kannst du vereinfachen, indem du das Ergebnis aus a) benutzt.

LG walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]