matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Termumformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Termumformung
Termumformung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Termumformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Mi 20.09.2006
Autor: Informacao

Hallo,

ich wollte mal fragen, ob ich hier die umformung einer in eine kreisgleichung eingesetzen gerade richtig gemacht habe...

[mm] (x+6)^{2}+(-\bruch{4}{3}x+3\bruch{1}{3}-3)^{2}=25 [/mm]
[mm] x^{2}+12x+36+(-\bruch{4}{3}x+\bruch{1}{3})^{2}=25 [/mm]
[mm] x^{2}+12x+36+\bruch{16}{9}x^{2}-\bruch{8}{9}x+\bruch{1}{9}=25 [/mm]
[mm] 1\bruch{16}{9}x^{2}+\bruch{100}{9}x+36\bruch{1}{9}=25 |:\bruch{25}{9} [/mm]
[mm] x^{2}+4x+13=25 [/mm]
[mm] x^{2}+4x-12=0 [/mm]

[mm] x_{1}=0 [/mm] , [mm] x_{2}=-8 [/mm]

Das stimmt nicht mit der Lösung überein, aber ich weiß nicht, wo ich meinen fehler gemacht habe.

Dann noch ein paar konkrete fragen, wo ich mir nicht sicher bin:
1. Was kommt raus, wenn man rechnet a) -1*-1   und b) -1² ..ich verwechsel das immer
2. wie macht man das mit der binomischen formel, wenn da beispielsweise steht: (-2+3)² dann ist das ja die 1. binomische formel...aber da steht ne -2 ...das macht mich total durcheinander !

Ich würde mich sehr über hilfe freuen!

viele grüße
informacao

        
Bezug
Termumformung: p/q-Formel falsch ausgerechnet
Status: (Antwort) fertig Status 
Datum: 17:54 Mi 20.09.2006
Autor: Loddar

Hallo Informacao!


Bis zur letzten Zeile kann ich keinen Fehler entdecken (aber immerhin Teufel ... Von daher ist meine Antwort etwas am Thema vorbei ...).

Aber dann machst Du wohl einen Fehler in der MBp/q-Formel bzw. beim Einsetzen:

[mm]x^{2}+4x-12=0[/mm]

[mm] $\Rightarrow$ $x_{1/2} [/mm] \ = \ [mm] -\bruch{4}{2}\pm\wurzel{\left(\bruch{4}{2}\right)^2-(-12)} [/mm] \ = \ [mm] -2\pm\wurzel{4+12} [/mm] \ = \ ...$


Kommst Du damit auf die gewünschten Lösungen?

  



> Dann noch ein paar konkrete fragen, wo ich mir nicht sicher
> bin:
> 1. Was kommt raus, wenn man rechnet a) -1*-1   und b) -1²
> ..ich verwechsel das immer

Bei $(-1)*(-1)_$ erhält man nach der Regel "Minus mal Minus ergibt Plus" den Wert $+1_$ .

Bei [mm] $-1^2$ [/mm] bezeiht sich das Quadrat nur auf die $1_$ und nicht auf das Minus, da keine Klammern gesetz sind.

Man erhält: [mm] $-1^2 [/mm] \ = \ -1*1 \ = \ -1$


>  2. wie macht man das mit der binomischen formel, wenn da
> beispielsweise steht: (-2+3)² dann ist das ja die 1.
> binomische formel...aber da steht ne -2 ...das macht mich
> total durcheinander !

Du kannst das ja entweder umdrehen zu [mm] $(-2+3)^2 [/mm] \ = \ [mm] (+3-2)^2 [/mm] \ = \ [mm] (3-2)^2$ [/mm] und nun weiter mit der 2. binomischen Formel.

Oder Du machst das wie oben in der Aufgabe auch von Dir praktiziert ...


Gruß
Loddar


Bezug
                
Bezug
Termumformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Mi 20.09.2006
Autor: Informacao

Danke!
Jetzt bin ich auch auf das Ergebnis gekommen...nur noch eine Frage zu den Vorzeichen bei der p,q Formel:

die heißt ja -p/2² ...wird das dann positiv wegen dem ² oder steht da eine klammer?
vielleicht mal ein beispiel:

[mm] x=-\bruch{2}{2}^{2}\pm\wurzel{16} [/mm]

was würde da rauskommen und warum?

viele grüße
informacao

Bezug
                        
Bezug
Termumformung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Mi 20.09.2006
Autor: Teufel

[mm] x_{1,2}=-\bruch{p}{2} \pm \wurzel{\bruch{p²}{4}-q} [/mm]

Vor der Wurzel kann etwas positves oder negatives herauskommen, kommt halt auf's p an. Aber der 1. Summand in der Klammer, also [mm] \bruch{p²}{4}, [/mm] ist immer positiv.

Bezug
        
Bezug
Termumformung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Mi 20.09.2006
Autor: Teufel

Leider ist dir doch ein Fehler unterlaufen. Als du [mm] :\bruch{25}{9} [/mm] divideiert hast, hast du die 25 außer Acht gelassen und das nur auf die linke Seite der Gleichung angewendet!

Bezug
                
Bezug
Termumformung: Gut aufgepasst!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Mi 20.09.2006
Autor: Loddar

Hallo Teufel!


Gut aufgepasst (im Gegensatz zu mir ;-) ...) [applaus]


Gruß
Loddar


Bezug
                        
Bezug
Termumformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Mi 20.09.2006
Autor: Teufel

Hab aber auch erst ne Weile gesucht ;) sowas fällt nicht auf...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]