matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieTerminologie von Dichtefkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Terminologie von Dichtefkt.
Terminologie von Dichtefkt. < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Terminologie von Dichtefkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:50 Do 29.07.2010
Autor: el.titeritero

Ich habe eine Frage zur mathematischen Terminologie:

Sei X: [mm] \Omega \to \IR [/mm] eine reelle Zufallsvariable

und [mm] f_{X}: \IR \to [/mm] P die Dichtefunktion von X.

Ich möchte nun wissen, wie ich die Definition der Dichte umschreiben muss,
um herauszustellen, dass sie (abgesehen von x) von exakt zwei Verteilungsparametern [mm] \theta_{1} [/mm] und [mm] \theta_{2} [/mm] abhängt.

Ich dachte an so etwas wie:

[mm] f_{X}(\theta_{1},\theta_{2}): \IR \to \IR [/mm] oder
[mm] f_{X}|\theta_{1},\theta_{2}: \IR \to \IR [/mm] oder etwa gar
[mm] f_{X}: \IR \times \mathcal{D}_{\theta_{1}} \times \mathcal{D}_{\theta_{2}} \to \IR, [/mm] wobei [mm] \mathcal{D}_{\theta_{1}}, \mathcal{D}_{\theta_{2}} [/mm] die Definitionsbereiche von [mm] \theta_{1} [/mm] bzw. [mm] \theta_{2} [/mm] sind...

Vielleicht auch etwas ganz anderes?
Wer kann mir da weiterhelfen?

Ich finde es generell schwierig zu entscheiden, welche Parameter mit in den Definitionsbereich aufgenommen werden sollten und welche nicht. Gibt es da eine sinnvolle Richtlinie?

Danke im Voraus.

        
Bezug
Terminologie von Dichtefkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:39 Fr 30.07.2010
Autor: gfm


> Ich habe eine Frage zur mathematischen Terminologie:
>  
> Sei X: [mm]\Omega \to \IR[/mm] eine reelle Zufallsvariable
>  
> und [mm]f_{X}: \IR \to[/mm] P die Dichtefunktion von X.
>  
> Ich möchte nun wissen, wie ich die Definition der Dichte
> umschreiben muss,
> um herauszustellen, dass sie (abgesehen von x) von exakt
> zwei Verteilungsparametern [mm]\theta_{1}[/mm] und [mm]\theta_{2}[/mm]
> abhängt.
>  
> Ich dachte an so etwas wie:
>  
> [mm]f_{X}(\theta_{1},\theta_{2}): \IR \to \IR[/mm] oder
> [mm]f_{X}|\theta_{1},\theta_{2}: \IR \to \IR[/mm] oder etwa gar
>  [mm]f_{X}: \IR \times \mathcal{D}_{\theta_{1}} \times \mathcal{D}_{\theta_{2}} \to \IR,[/mm]
> wobei [mm]\mathcal{D}_{\theta_{1}}, \mathcal{D}_{\theta_{2}}[/mm]
> die Definitionsbereiche von [mm]\theta_{1}[/mm] bzw. [mm]\theta_{2}[/mm]
> sind...
>  
> Vielleicht auch etwas ganz anderes?
>  Wer kann mir da weiterhelfen?
>  
> Ich finde es generell schwierig zu entscheiden, welche
> Parameter mit in den Definitionsbereich aufgenommen werden
> sollten und welche nicht. Gibt es da eine sinnvolle
> Richtlinie?
>  
> Danke im Voraus.

Da gibt es mehr als eine Möglichkeit

z.B.

Sei [mm] f_{\theta_1,\theta_2}:\IR\to\IR_0^+ [/mm] eine Schar von Wahrscheinlichkeitsdichten mit [mm] (\theta_1,\theta_2)\in M\subseteq\IR^2 [/mm]

oder

Sei [mm] M\subseteq\IR^2 [/mm] und [mm] f:M\times\IR\to\IR_0^+ [/mm] eine Abbildung, so dass [mm] f(\theta_1,\theta_2,.) [/mm] für alle [mm] (\theta_1,\theta_2)\in M\subseteq\IR^2 [/mm] eine W-Dichte ist.

Das hängt u.a. von Deinem persönlichen Geschmack und von der konkreten Situation ab.

Was hast Du denn konkret vor?

LG

gfm






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]