matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesTensorprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Tensorprodukt
Tensorprodukt < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tensorprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Di 17.06.2008
Autor: reginalex

Aufgabe
Es sei [mm] V=\IR^{3} [/mm] ausgestattet mit dem kanonischen Skalarprodukt [mm] \pi:= [/mm] V [mm] \times [/mm] V [mm] \to \IR. [/mm] Es sei [mm] \mu:= [/mm] V [mm] \otimes [/mm] V [mm] \to \IR [/mm] die induzierte lineare Abbildung. Geben Sie (mit Beweis) eine Basis von [mm] ker(\mu) [/mm] an.

Hallo
Bin nach eingem rumrechenen darauf gekommen, dass v [mm] \otimes [/mm] u = 0 [mm] \gdw [/mm] v=0 [mm] \vee [/mm] u=0 [mm] \vee [/mm] v [mm] \perp [/mm] u mit v,u [mm] \in [/mm] V.
Das müsste ich natürlich noch beweisen, aber bevor ich mir die Mühe mache, würd ich gern wissen, ob das überhaupt in die richtige Richtung geht.
Meine Rechnung war ungefähr folgende:
v [mm] \otimes [/mm] u = [mm] \summe_{i,j=1}^{3} (\lambda_{i} \mu_{j} \pi(v_{i},v_{j})) [/mm] = [mm] \summe_{i,j=1}^{3} (\lambda_{i} \mu_{j} \delta_{ij}) \Rightarrow [/mm] meine Behauptung
so ungefähr...
Wär echt nett, wenn das mal jemand kommentiert!
Vielen Dank!



        
Bezug
Tensorprodukt: Kommentar
Status: (Antwort) fertig Status 
Datum: 08:44 Mi 18.06.2008
Autor: statler

Guten Morgen!

> Es sei [mm]V=\IR^{3}[/mm] ausgestattet mit dem kanonischen
> Skalarprodukt [mm]\pi:=[/mm] V [mm]\times[/mm] V [mm]\to \IR.[/mm] Es sei [mm]\mu:=[/mm] V
> [mm]\otimes[/mm] V [mm]\to \IR[/mm] die induzierte lineare Abbildung. Geben
> Sie (mit Beweis) eine Basis von [mm]ker(\mu)[/mm] an.

>  Bin nach eingem rumrechenen darauf gekommen, dass v
> [mm]\otimes[/mm] u = 0 [mm]\gdw[/mm] v=0 [mm]\vee[/mm] u=0 [mm]\vee[/mm] v [mm]\perp[/mm] u mit v,u [mm]\in[/mm]
> V.

Was sind hier u und v? Nach meinem Verständnis steht der Nullvektor auf jedem anderen Vektor senkrecht.

>  Das müsste ich natürlich noch beweisen, aber bevor ich mir
> die Mühe mache, würd ich gern wissen, ob das überhaupt in
> die richtige Richtung geht.
>  Meine Rechnung war ungefähr folgende:
>  v [mm]\otimes[/mm] u = [mm]\summe_{i,j=1}^{3} (\lambda_{i} \mu_{j} \pi(v_{i},v_{j}))[/mm]
> = [mm]\summe_{i,j=1}^{3} (\lambda_{i} \mu_{j} \delta_{ij}) \Rightarrow[/mm]
> meine Behauptung
>  so ungefähr...
>  Wär echt nett, wenn das mal jemand kommentiert!

Das geht anscheinend in die richtige Richtung. Da du mit einem konkreten VR arbeitest, kannst du auch mit einer konkreten Basis arbeiten. Welche Dimension hat denn V [mm] \otimes [/mm] V? Welche Dim. hat das Bild von [mm] \mu, [/mm] wie groß ist also der Kern?

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Tensorprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:22 Mi 18.06.2008
Autor: reginalex

u und v sollten belibige Vektoren aus V sein.
Stimmt, dann kann ich das ganze ja auf
v [mm] \otimes [/mm] u = 0 [mm] \gdw [/mm] v [mm] \perp [/mm] u beschränken.

dim( V [mm] \otimes [/mm] V ) =9 und [mm] dim(im(\mu))=1 [/mm] (da [mm] \mu(v \otimes [/mm] u) [mm] \in \IR) [/mm]
Dann ist [mm] dim(ker(\mu))=8 [/mm]

Ich wähle dann einfach mal die kanonische Basis von V [mm] (e_{1},e_{2},e_{3}) [/mm]
Daraus entsteht die Basis von V [mm] \otimes [/mm] V
[mm] e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{1} \otimes e_{3}, [/mm]
[mm] e_{2} \otimes e_{1}, e_{2} \otimes e_{2}, e_{2} \otimes e_{3}, [/mm]
[mm] e_{3} \otimes e_{1}, e_{3} \otimes e_{2}, e_{3} \otimes e_{3} [/mm]

Bis auf [mm] e_{1} \otimes e_{1}, e_{2} \otimes e_{2}, e_{3} \otimes e_{3} [/mm] sind alle [mm] \mu(e_{i,j})=0, [/mm] das heißt, diese drei sind nicht im Kern von [mm] \mu...richtig? [/mm]
Dann hab ich aber nur noch sechs Elemente in der Basis des Kerns...wie komme ich an die anderen beiden?

Bezug
                        
Bezug
Tensorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Mi 18.06.2008
Autor: statler

Hi!

> u und v sollten belibige Vektoren aus V sein.
>  Stimmt, dann kann ich das ganze ja auf
> v [mm]\otimes[/mm] u = 0 [mm]\gdw[/mm] v [mm]\perp[/mm] u beschränken.

Hier bringst du etwas durcheinander! [mm] e_{1} [/mm] und [mm] e_{2} [/mm] sind orthogonal, aber [mm] e_{1} \otimes e_{2} [/mm] ist sogar ein Basiselement, also [mm] \not= [/mm] 0. Es wird aber auf 0 abgebildet.

> dim( V [mm]\otimes[/mm] V ) =9 und [mm]dim(im(\mu))=1 (\mu(v \otimes[/mm] u)
> [mm]\in \IR)[/mm]
>  Dann ist [mm]dim(ker(\mu))=8[/mm]
>  
> Ich wähle dann einfach mal die kanonische Basis von V
> [mm](e_{1},e_{2},e_{3})[/mm]
>  Daraus entsteht die Basis von V [mm]\otimes[/mm] V
>  [mm]e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{1} \otimes e_{3},[/mm]
>  
> [mm]e_{2} \otimes e_{1}, e_{2} \otimes e_{2}, e_{2} \otimes e_{3},[/mm]
> [mm]e_{3} \otimes e_{1}, e_{3} \otimes e_{2}, e_{3} \otimes e_{3}[/mm]
>  
> Bis auf [mm]e_{1} \otimes e_{1}, e_{2} \otimes e_{2}, e_{3} \otimes e_{3}[/mm]
> sind alle [mm]\mu(e_{i,j})=0,[/mm] das heißt, diese drei sind nicht
> im Kern von [mm]\mu...richtig?[/mm]
> Dann hab ich aber nur noch sechs Elemente in der Basis des
> Kerns...wie komme ich an die anderen beiden?

Untersuch doch mal die Linearkombinationen der 3 anderen, die selbst nicht im Kern liegen. Das hast du oben sogar schon gemacht, aber nicht zu Ende geführt.

Gruß
Dieter

Bezug
                                
Bezug
Tensorprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:56 Mi 18.06.2008
Autor: reginalex

Ok, ich versuchs mal
v [mm] \otimes [/mm] u = [mm] \summe_{i,j=1}^{3}(\lambda_{i} \nu_{j} \delta_{ij}) [/mm] und es geht jetzt um den Fall i=j
Also muss [mm] \summe_{i,j=1}^{3}(\lambda_{i} \nu_{j})=0 \gdw \lambda=0 \forall [/mm] i oder [mm] \nu=0 \forall [/mm] j sein

Das sind dann wahrscheinlich die zwei Fälle die ich noch brauche, aber wie drücke ich das am Besten aus? Ist dann in dem einen Fall v=0 und in dem anderen u=0, also wären die zwei Elemente der Basis des Kerns [mm] (v_{i} \otimes 0)_{i} [/mm] und (0 [mm] \otimes u_{j})_{j}? [/mm]

Bezug
                                        
Bezug
Tensorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 Mi 18.06.2008
Autor: statler

Hi!

> Ok, ich versuchs mal
>  v [mm]\otimes[/mm] u = [mm]\summe_{i,j=1}^{3}(\lambda_{i} \nu_{j} \delta_{ij})[/mm]

Das kann so nicht sein! Links steht ein Tensor und rechts eine Zahl, das paßt nicht zusammen.

Du mußt ansetzen u [mm] \otimes [/mm] v = [mm] \summe_{i, j=1}^{3} \lambda_{ij}e_{i}\otimes e_{j} [/mm]
Was ist das Bild davon, und wann ist es = 0?

> und es geht jetzt um den Fall i=j
>  Also muss [mm]\summe_{i,j=1}^{3}(\lambda_{i} \nu_{j})=0 \gdw \lambda=0 \forall[/mm]
> i oder [mm]\nu=0 \forall[/mm] j sein
>  
> Das sind dann wahrscheinlich die zwei Fälle die ich noch
> brauche, aber wie drücke ich das am Besten aus? Ist dann in
> dem einen Fall v=0 und in dem anderen u=0, also wären die
> zwei Elemente der Basis des Kerns [mm](v_{i} \otimes 0)_{i}[/mm] und
> (0 [mm]\otimes u_{j})_{j}?[/mm]  

v [mm] \otimes [/mm] 0 ist 0 (der Nullvektor), das kann kein Basiselement sein. Tensoren sind ein schwieriges Gelände. Aber bei Vektorräumen geht es noch...

Gruß
Dieter


Bezug
                                                
Bezug
Tensorprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:22 Mi 18.06.2008
Autor: reginalex

Ich versteh das alles mit den Tesorprodukten nicht....ich will doch nur Lehrer werden ;-)
Ich hab jetzt leider auch keine Zeit mehr, muss gleich los zur Uni und die Aufgabe abgeben.
Werd unterwegs nochmal versuchen Ihre Tipps umzusetzten, aber
VIELEN DANK auf jeden Fall für die Hilfe so früh am Morgen!

Schönen Tag noch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]