matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeTeilräume eines Vektorraums
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Teilräume eines Vektorraums
Teilräume eines Vektorraums < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilräume eines Vektorraums: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Sa 10.11.2007
Autor: kasia

Aufgabe
Seien A, B und C Teilraüme eines Vektorraumes V.

(a) Zeige, dass, falls C [mm] \subset [/mm] A, die folgende Gleichung von Teilräumen gilt:
A [mm] \cap [/mm] (B + C) = (A [mm] \cap [/mm] B) + C.

(b) Prüfe, ob die Verteilungsgesetze
     (i)  A [mm] \cap [/mm] (B + C) = (A [mm] \cap [/mm] B) + (A [mm] \cap [/mm] C)
     (ii) A + (B [mm] \cap [/mm] C) = (A + C) [mm] \cap [/mm] (A + C)
allgemein gelten.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!
Ich weiß leider nicht, wie man solche Gleichungen zeigen kann. Ich könnte zwar ausformulieren warum zB die Gleichung aus (a) stimmen muss, ich glaube aber nicht, dass die Aufgabe  somit ausreichend gelöst wär!
Hoffe, jemand kann mir erklären, wie ich bei solchen Aufgaben vorzugehen habe!

Danke im Voraus!!!


        
Bezug
Teilräume eines Vektorraums: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Sa 10.11.2007
Autor: blascowitz

Guten Abend

Mit Teilräume meinst du wohl Unterräume. Also sei C [mm] \subset [/mm] A.
Sei nun x [mm] \in [/mm] A [mm] \cap [/mm] (B+C). Generell nimmt man sich ein beliebiges!!!!!! Element was in der Linken menge ist und versucht zu zeigen dass es auch in der Rechten menge enthalten ist.
Also sei x beliebig wie oben gewählt dann ist x [mm] \in [/mm] A [mm] \wedge [/mm] x = b+c weil x [mm] \in [/mm] B+C. Dann ist b = x- c (-c existiert weil C ein Unterraum, also selber ein Vektorraum ist). Wenn C [mm] \subset [/mm] A was heißt das dann für b? (Stichwort abgeschlossenheit von Unterräumen). Es folgt dann die Behauptung für die rechte Seite.

Bei der zweiten Aufgabe musst du schauen ob es dir gelingt Gegenbeispiele zu konstruieren. Denn dann gelten die Aussagen nicht allgemein. Immer mit möglichst kleinen Mengen probieren. Wenn es nicht geht, dann versuchen zu beweisen, mit der selben methode wie oben.
Einen schönen Abend noch.


Bezug
                
Bezug
Teilräume eines Vektorraums: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 Sa 10.11.2007
Autor: kasia

Vielen Dank für die schnelle Antwort!
Denke, dass ich die Aufgaben mit den Tipps nun lösen kann!




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]