matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNaive MengenlehreTeilmengen einer Grundmenge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Naive Mengenlehre" - Teilmengen einer Grundmenge
Teilmengen einer Grundmenge < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilmengen einer Grundmenge: Korrektur, Tipps, Zweifel
Status: (Frage) beantwortet Status 
Datum: 18:29 So 06.11.2011
Autor: Dym

Aufgabe
Es seien A und B zwei Teilmengen einer Grundmenge G. Begründen Sie:
a)
[mm] \overline{(A}\cap\overline{B)} [/mm] = [mm] \overline{A}\cup\overline{B} [/mm]
b)
[mm] \overline{(A}\cup\overline{B)} [/mm] = [mm] \overline{A}\cap\overline{B} [/mm]

wobei z.B. [mm] \overline{A}, [/mm] das Komplement von A einer Grundmenge G ist.

Geben Sie im Fall G:= [mm] \IZ, [/mm]
A:= [mm] {k\in\IZ | k mod 2 \equiv 1}. [/mm]
B:= [mm] {k\in\IZ | k mod 4 \equiv 1 oder 2}. [/mm]

die jeweiligen Mengen explizit an.

Ich habe diese Aufgabe falsch gemacht so kommt es mir vor, es wäre nett wenn mir jemand einen Tipp oder sagt was ich falsch habe und was richtig wäre:

G:= [mm] \IZ [/mm]
A:= {...,1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,...}
B:= {...,1,2,5,6,9,10,13,14,17,18,21,22,25,26,29,30,...}

a)(I.) [mm] \overline{(A}\cap\overline{B)} [/mm] =(II.) [mm] \overline{A}\cup\overline{B} [/mm]

(I.) x [mm] \in [/mm] G [mm] \cap [/mm] x [mm] \not\in [/mm] A [mm] \cap [/mm] x [mm] \not\in [/mm] B = (II.) x [mm] \in [/mm] G [mm] \cap [/mm] x [mm] \not\in [/mm] A [mm] \cup [/mm] x [mm] \in [/mm] G [mm] \cap [/mm] x [mm] \not\in [/mm] B
(I.) {...,-2,-1,0,4,8,12,16,20,..} = (II.) {...,-2,-1,0,2,4,8,12,16,20,..}

b)(I.) [mm] \overline{(A}\cup\overline{B)} [/mm] =(II.) [mm] \overline{A}\cap\overline{B} [/mm]

(I.) x [mm] \in [/mm] G [mm] \cap [/mm] x [mm] \not\in [/mm] A [mm] \cup [/mm] x [mm] \not\in [/mm] B = (II.) x [mm] \in [/mm] G [mm] \cap [/mm] x [mm] \not\in [/mm] A [mm] \cap [/mm] x [mm] \in [/mm] G [mm] \cap [/mm] x [mm] \not\in [/mm] B

(I.) {..,-2,-1,0,4,8,12,16,20,..} = (II.) {..,-2,-1,0,4,8,12,16,20,..}

Ich habe die Aufgabe jetzt an einem Beispiel versucht zu erklären, aber was gefragt war einer allgemein Lösung? Ich weiß echt nicht weiter, bitte um Rat!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Teilmengen einer Grundmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 So 06.11.2011
Autor: gnom347

Ich würde so anfangen:
Sei [mm] A\subseteq [/mm] G  und [mm] B\subseteq [/mm] G
[mm] \Rightarrow \overline{A} [/mm] = [mm] G\setminus [/mm] A und [mm] \overline{B} [/mm] = [mm] G\setminus [/mm] B

Ich nehme an so habt ihr das Komplement definiert.
Dann schaust du dir an wie ihr Vereinigung und schnittmenge definiert habt und .....schau am besten erstmal selber.

Bezug
                
Bezug
Teilmengen einer Grundmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 So 06.11.2011
Autor: Dym

Genau so haben wir das Komplement auch definiert, [mm] G\A [/mm] und [mm] G\B, [/mm] das ist vollkommen richtig, meine Frage war nur wie ich auf die Aufgabenstellung eine Antwort richtig gebe, bzw. ob meine Antwort reicht? Die Mengen habe ich ja schon gebildet.

Bezug
                        
Bezug
Teilmengen einer Grundmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 So 06.11.2011
Autor: gnom347

Nein deine antwort reicht nicht
Du machst auch ganz merkwürdige dinge
x $ [mm] \in [/mm] $ G $ [mm] \cap [/mm] $ x $ [mm] \not\in [/mm] $ A   sowas gibts es nicht du vereinigst ein element aus einer menge und ein element was in einer anderen Menge nicht sein soll.
Das macht einfach keinen sinn. Du kannst immer nur Mengen Vereinigen keine elemente.
Ich gebe gebe dir mal ein sehr einfaches Beispiel wie Eine Mengengleichheit gezeigt werden kann.
Beh:
Sei A [mm] \subseteq [/mm] B
Dann gilt: A  [mm] \cup [/mm] B  = B
Also ich möchte zeigen, dass A Vereinigt mit B  wieder B ist.
Bew:
Ich möchte die Mengengleichheit zeigen, indem ich zeige das  1. jedes element aus  A  [mm] \cup [/mm] B  In B  ist, und 2. das jedes Element aus B in  A  [mm] \cup [/mm] B ist.Damit habe ich gezeigt, dass  A  [mm] \cup [/mm] B  und B die selben Elemente haben und somit die selben mengen sind.
Wegen A [mm] \subseteq [/mm] B gilt: (p) [mm] x\in [/mm] A [mm] \Rightarrow [/mm] x [mm] \in [/mm] B
1. Sei [mm] x\in [/mm]  A  [mm] \cup [/mm] B  [mm] \Rightarrow [/mm] x [mm] \in [/mm]  A [mm] \vee [/mm] x [mm] \in [/mm] B [mm] \Rightarrow [/mm] (Wegen p)  x [mm] \in [/mm]  B [mm] \vee [/mm] x [mm] \in [/mm] B [mm] \Rightarrow [/mm] x  [mm] \in [/mm] B
2.Sei [mm] x\in [/mm] B [mm] \Rightarrow [/mm] x  [mm] \in [/mm]  A [mm] \vee [/mm]  x [mm] \in [/mm] B [mm] \Rightarrow x\in [/mm]  A  [mm] \cup [/mm] B

Damit währe die Mengengleichheit gezeigt.
Das selbe musst du jetzt mit deiner Aufgabe machen.




Bezug
                                
Bezug
Teilmengen einer Grundmenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:04 So 06.11.2011
Autor: Dym

Danke für deine Rückmeldung!

Bezug
        
Bezug
Teilmengen einer Grundmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 So 06.11.2011
Autor: reverend

Hallo Dym,

die Aufgabe ist Unsinn. Hast Du sie richtig abgeschrieben?

> Es seien A und B zwei Teilmengen einer Grundmenge G.
> Begründen Sie:
> a)
>  [mm]\overline{(A}\cap\overline{B)}[/mm] =
> [mm]\overline{A}\cup\overline{B}[/mm]
>  b)
> [mm]\overline{(A}\cup\overline{B)}[/mm] =
> [mm]\overline{A}\cap\overline{B}[/mm]
>  
> wobei z.B. [mm]\overline{A},[/mm] das Komplement von A einer
> Grundmenge G ist.
>  
> Geben Sie im Fall G:= [mm]\IZ,[/mm]
>  A:= [mm]{k\in\IZ | k mod 2 \equiv 1}.[/mm]
>  B:= [mm]{k\in\IZ | k mod 4 \equiv 1 oder 2}.[/mm]
>  
> die jeweiligen Mengen explizit an.

Die Aussagen sind falsch und daher nicht zu beweisen.
Meinst Du vielleicht die []de Morganschen Regeln?

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]