matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraTeilmengen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Teilmengen
Teilmengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilmengen: und Teilräume
Status: (Frage) beantwortet Status 
Datum: 09:18 Mi 24.11.2004
Autor: DerMathematiker

Hallo Ihr,

also ich habe folgende Beispielaufgabe:

Aufgabenstellung:

Welcher der folgenden Teilmengen sind Teilräume des reellen Vektorraums [mm] \IR^{4}? [/mm]

(i) [mm] x=^{t}(x1,..,x4)\in \IR^{4} [/mm] | [mm] x_{1} [/mm] + [mm] 2x_{2} [/mm] + [mm] 3x_{3} [/mm] + [mm] 4x_{4} [/mm]

Wie gehe ich da vor? Wäre cool. wenn mir jemand helfen könnte.

MfG Andi

        
Bezug
Teilmengen: Nachfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:19 Mi 24.11.2004
Autor: Astrid

Hallo Andi,


> Welcher der folgenden Teilmengen sind Teilräume des reellen
> Vektorraums [mm]\IR^{4}? [/mm]
>  
> (i) [mm]x=^{t}(x1,..,x4)\in \IR^{4}[/mm] | [mm]x_{1}[/mm] + [mm]2x_{2}[/mm] + [mm]3x_{3}[/mm] + [mm]4x_{4}[/mm]

Fehlt da nicht vielleicht noch eine Bedingung für die [mm] x_i [/mm] 's, also zum Beispiel "=0" oder so?
Als Teilräume meinst du Untervektorräume, oder?

Viele Grüße
Astrid

Bezug
                
Bezug
Teilmengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:38 Mi 24.11.2004
Autor: DerMathematiker

Hups...sorry da steht natürlich...
[mm] x_{1} [/mm] + [mm] 2x_{2} [/mm] + [mm] 3x_{3} [/mm] + [mm] 4x_{4} [/mm] = 0

wie geht das nun?

Bezug
        
Bezug
Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Mi 24.11.2004
Autor: Astrid

Hallo Andi,

> Aufgabenstellung:
>  
> Welcher der folgenden Teilmengen sind Teilräume des reellen
> Vektorraums [mm]\IR^{4}? [/mm]
>  
> (i) [mm]x=^{t}(x1,..,x4)\in \IR^{4}[/mm] | [mm]x_{1}[/mm] + [mm]2x_{2}[/mm] + [mm]3x_{3}[/mm] +
> [mm]4x_{4} [/mm]
>  
> Wie gehe ich da vor? Wäre cool. wenn mir jemand helfen
> könnte.

Um zu zeigen, dass die Menge M ein Untervektorraum von [mm] \IR^4 [/mm] ist (ich denke mal, dass das gemeint ist), mußt du zeigen:

(i) M [mm] \not= \emptyset [/mm]
(ii) x,y [mm] \in [/mm] M [mm] \Rightarrow [/mm] x+y [mm] \in [/mm] M
(iii) x [mm] \in [/mm] M, [mm] \lambda \in \IR \Rightarrow \lambda*x \in [/mm] M

(i) ist z.B. erfüllt, da 0 [mm] \in [/mm] M, da der Nullvektor die Bedingung erfüllt
(ii) ist auch erfüllt, da jedes Element x+y die Gleichung erfüllt, wenn jeweils x und y die Gleichung erfüllen.
(iii) analog

Falls dir die Erklärung doch zu kurz ist, sag Bescheid!

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]