matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperTeilmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Teilmenge
Teilmenge < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Do 11.10.2012
Autor: unibasel

Aufgabe
Sei Q [mm] \in \IR^{2} [/mm] ein Quadrat der Seitenlänge a, und sei [mm] \epsilon>0. [/mm] Weiter sei M eine Teilmenge von Q, mit der Eigenschaft, dass der Abstand zwischen je zwei Punkten von M stets [mm] \ge \epsilon. [/mm] Man fnde eine explizite obere Schranke für die Anzahl der Elemente von M.

Ich habe null Vorstellung, wie ich diese Aufgabe lösen soll.

Nun ein Element b [mm] \in \IQ [/mm] heisst obere Schranke von M, wenn x
[mm] \le [/mm] b für alle x [mm] \in [/mm] M...

Wie soll ich das mit dem Quadrat in Verbindung bringen und allgemein was es mit dem Thema Untergruppen, Nebenklassen und Isomorphismus zu tun hat, ist mir unklar.

Wäre froh, wenn es mir jemand erklären könnte.
Danke und mfg :)



        
Bezug
Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Do 11.10.2012
Autor: Al-Chwarizmi


> Sei Q [mm]\in \IR^{2}[/mm] ein Quadrat der Seitenlänge a, und sei
> [mm]\epsilon>0.[/mm] Weiter sei M eine Teilmenge von Q, mit der
> Eigenschaft, dass der Abstand zwischen je zwei Punkten von
> M stets [mm]\ge \epsilon.[/mm] Man finde eine explizite obere
> Schranke für die Anzahl der Elemente von M.
>  Ich habe null Vorstellung, wie ich diese Aufgabe lösen
> soll.
>  
> Nun ein Element b [mm]\in \IQ[/mm] heisst obere Schranke von M, wenn
> x
> [mm]\le[/mm] b für alle x [mm]\in[/mm] M...
>  
> Wie soll ich das mit dem Quadrat in Verbindung bringen und
> allgemein was es mit dem Thema Untergruppen, Nebenklassen
> und Isomorphismus zu tun hat, ist mir unklar.


Hallo,

diese Aufgabe hat kaum viel mit Gruppentheorie etc. zu
tun, aber wohl mit Elementargeometrie. Ist P ein Element
von M, so kann es im Inneren des Kreises um P mit
Radius [mm] \epsilon [/mm] keine weiteren Punkte von M geben.
Da der Flächeninhalt von Q endlich ist, kann es deshalb
in M auch nur endlich viele Punkte geben.
Um zu einer oberen Schranke für die Anzahl der Elemente
von M zu kommen, kannst du z.B. das Quadrat Q in Teil-
quadrate einer geeigneten Seitenlänge zerlegen mit der
Eigenschaft, dass jedes dieser Teilquadrate höchstens
einen Punkt von M enthalten kann.
Wenn du ganz ehrgeizig bist und die kleinste obere
schranke ermitteln möchtest, dann wird es deutlich
schwieriger, denn du müsstest dich dann mit Kreis-
packungen in der Ebene beschäftigen.

LG    Al-Chwarizmi  

Bezug
                
Bezug
Teilmenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:31 Fr 12.10.2012
Autor: felixf

Moin,

> diese Aufgabe hat kaum viel mit Gruppentheorie etc. zu
>  tun, aber wohl mit Elementargeometrie. Ist P ein Element
> von M, so kann es im Inneren des Kreises um P mit
>  Radius [mm]\epsilon[/mm] keine weiteren Punkte von M geben.
>  Da der Flächeninhalt von Q endlich ist, kann es deshalb
>  in M auch nur endlich viele Punkte geben.
>  Um zu einer oberen Schranke für die Anzahl der Elemente
>  von M zu kommen, kannst du z.B. das Quadrat Q in Teil-
>  quadrate einer geeigneten Seitenlänge zerlegen mit der
>  Eigenschaft, dass jedes dieser Teilquadrate höchstens
>  einen Punkt von M enthalten kann.

alternativ kann man auch einen Kreis um jeden Punkt legen mit einem Radius, so dass sich zwei solche Kreise nicht schneiden. Dann ist die Summe der Kreisflaecheninhalte kleiner als der Flaecheninhalt eines etwas vergroesserten Quadrates. Damit bekommt man eine obere Schranke fuer die Anzahl der Elemente im Kreis.

>  Wenn du ganz ehrgeizig bist und die kleinste obere
>  schranke ermitteln möchtest, dann wird es deutlich
>  schwieriger, denn du müsstest dich dann mit Kreis-
>  packungen in der Ebene beschäftigen.

Das ist aber wirklich ein sehr schweres Problem :)

LG Felix


Bezug
                        
Bezug
Teilmenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:52 Fr 12.10.2012
Autor: Al-Chwarizmi


> alternativ kann man auch einen Kreis um jeden Punkt legen
> mit einem Radius, so dass sich zwei solche Kreise nicht
> schneiden. Dann ist die Summe der Kreisflaecheninhalte
> kleiner als der Flaecheninhalt eines etwas vergroesserten
> Quadrates. Damit bekommt man eine obere Schranke fuer die
> Anzahl der Elemente im Kreis.

Natürlich - dies ist ja auch die erste Idee zur Lösung hin.
Ich habe Quadrate vorgeschlagen, weil damit die Rechnung
noch einfacher wird.

LG,   Al


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]