matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraTeilmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Teilmenge
Teilmenge < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilmenge: Beweis
Status: (Frage) beantwortet Status 
Datum: 18:49 Mi 27.10.2004
Autor: SabineG

Hab hier ne Aufgabe, die ich morgen abgeben muss und hab keinen plan.

Man beweise, dass es keine Menge A gibt mit P(A) [mm] \subseteq [/mm] A.
Gibt es eine Menge B mit P(P(B)) [mm] \subseteq [/mm] B?
Die P´´s sollen, glaub ich, Potenz-irgendwas bedeuten.

Ich hoffe mir kann jemand helfen.

        
Bezug
Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Mi 27.10.2004
Autor: Wessel

Hallo,

mit $P(A)$ bezeichnet man die Potenzmenge $P$ einer Menge $A$. Wenn Dir klar ist, was eine Potenzmenge ist, dann dürfte die Aufgabe recht einfach werden:

Definition: Als Potenzmenge $P$ bezeichnet man in der Mengenlehre die Menge aller Teilmengen einer gegebenen Grundmenge $A$.

Ergo: Die Potenzmenge ist also ein Mengensystem, das heißt, eine Menge, deren Elemente selbst Mengen sind.

Beispiel: [mm] $A:=\{1,2\} \Rightarrow P(A):=\{\{1\},\{2\},\{1,2\},\{\}\}$ [/mm]

Nun zu Deiner Aufgabe: Wenn $P(A)  [mm] \subseteq [/mm] A$ gelten soll, dann sind alle Elemente von $P(A)$ auch Elemente von $A$. Du kannst Dir ja erst einmal überlegen, was wäre, wenn $P(A)=A$ gilt...

Gruß,

Stefan

Bezug
                
Bezug
Teilmenge: Frage mit Idee
Status: (Frage) beantwortet Status 
Datum: 14:06 Do 28.10.2004
Autor: SERIF

Ich glaube wenn die Potenzmenge von eine Menge M  also
P(M) [mm] \subseteq [/mm] M  ist.

dann hat M nur eine Element oder M ist Leermenge

Stimmt das??

Bezug
                        
Bezug
Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Do 28.10.2004
Autor: Wessel

Hallo,

> Ich glaube wenn die Potenzmenge von eine Menge M  also
>  P(M) [mm]\subseteq[/mm] M  ist.
>  
> dann hat M nur eine Element oder M ist Leermenge
>  
> Stimmt das??
>  

Also, wenn $M$ nur ein Element besitzt, dann ist Deine Aussage falsch, denn $P(M)$ enthält neben $M$ stets auch die leere Menge:

[mm] $M:=\{1\} \Rightarrow P(M):=\{\{1\},\{\}\}$ [/mm] und demnach $P(M) [mm] \not \subseteq [/mm] M$

Nach Definition ist für [mm] $\{\}$: $P(\{\}) [/mm] = [mm] \{\{\}\}$, [/mm] demnach hast Du mit Deiner zweiten Überlegung recht.

Gruß,

Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]