matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieTeileranzahl natürlicher Zahle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Teileranzahl natürlicher Zahle
Teileranzahl natürlicher Zahle < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teileranzahl natürlicher Zahle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Sa 12.05.2012
Autor: imagemixer

Hallo, ich habe diese Frage auf keinem anderen Forum gestellt.

Ich habe alle Zahlen [mm] n\in \IN [/mm] mit 100 < n < 200 zu bestimmen, die genau 4 Teiler haben.
Als Ansatz habe ich:
n ist nicht prim,
n ist keine Quadratzahl,
n ist Produkt von höchstens zwei Primzahlen.

Ist mein Ansatz eigentlich korrekt und wie wende ich das alles denn jetzt explizit an ?

Viele Grüße

        
Bezug
Teileranzahl natürlicher Zahle: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Sa 12.05.2012
Autor: Schadowmaster


> Hallo, ich habe diese Frage auf keinem anderen Forum
> gestellt.
>  
> Ich habe alle Zahlen [mm]n\in \IN[/mm] mit 100 < n < 200 zu
> bestimmen, die genau 4 Teiler haben.
>  Als Ansatz habe ich:
>  n ist nicht prim,
>  n ist keine Quadratzahl,
>  n ist Produkt von höchstens zwei Primzahlen.
>  
> Ist mein Ansatz eigentlich korrekt und wie wende ich das
> alles denn jetzt explizit an ?

moin,

Die ersten zwei Punkte sehen gut aus, aber über den dritten solltest du nochmal nachdenken:
"höchstens" zwei Primzahlen ist ein wenig witzlos, weil du "eine" Primzahl bereits im ersten Punkt ausgeschlossen hast.
Auch hast du zwei gleiche Primzahlen bereits im zweiten Punkt ausgeschlossen.
Und dann überlege dir vielleicht nochmal, wieso 125 (hat genau vier Teiler) als Beispiel von deinem Verfahren nicht entdeckt wird.

lg

Schadow


Bezug
                
Bezug
Teileranzahl natürlicher Zahle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Sa 12.05.2012
Autor: imagemixer

Okay [mm] 5^3=125 [/mm]
ist der dritte Punkt dann vielleicht "n ist Produkt von mindestens zwei Primzahlen" ?
Brauche ich noch weitere Punkte oder wie fahr ich fort?

Bezug
                        
Bezug
Teileranzahl natürlicher Zahle: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Sa 12.05.2012
Autor: abakus


> Okay [mm]5^3=125[/mm]
>  ist der dritte Punkt dann vielleicht "n ist Produkt von
> mindestens zwei Primzahlen" ?
>  Brauche ich noch weitere Punkte oder wie fahr ich fort?

Du hast schon zu viel.
Es gibt genau zwei wesentliche Kriterien:
ENTWEDER die dritte Potenz einer Primzahl ODER das Produkt von GENAU 2 Primzahlen (und das ganze im vorgegebenen Bereich).
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]