matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieTeilbarkeitsregel für 7,11,13
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Teilbarkeitsregel für 7,11,13
Teilbarkeitsregel für 7,11,13 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeitsregel für 7,11,13: Beweissuche
Status: (Frage) beantwortet Status 
Datum: 21:45 Do 22.11.2007
Autor: Soeckchen

Aufgabe
Zeigen Sie, dass für n>3 eine n-stellige Zahl [mm] (Z_{n} [/mm] ; ... ; [mm] Z_{1}) [/mm] mit Ziffern [mm] Z_{n},...,Z_{1} [/mm] (z.B. (3;4;5;6;7)=34567 mit Ziffern 3 , 4 , 5 , 6 , 7) genau dann teilbar ist durch 7, 11 oder 13, wenn die Zahl [mm] (Z_{3} [/mm] ; [mm] Z_{2} [/mm] ; [mm] Z_{1}) [/mm] - [mm] (Z_{n} [/mm] ; ... ; [mm] Z_{4}) [/mm] teilbar ist durch 7, 11 oder 13.
Im Beispiel heißt das:
34567 ist teilbar durch 7,11 oder 13 [mm] \gdw [/mm] 567-34 teilbar durch 7, 11 oder 13.

Ich habe im Moment nicht mal die Idee, wie ich da am besten anfange, geschweige denn, wie ich das beweisen könnte...Ich wäre für einen Gedankenstubser sehr dankbar, der zumindest schon mal eine Richtung aufzeigt, in der der Beweis, bzw die Beweisidee liegen könnte.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Teilbarkeitsregel für 7,11,13: Tip
Status: (Antwort) fertig Status 
Datum: 22:06 Do 22.11.2007
Autor: leduart

Hallo
rechne mal 7*11*13 aus!
dann weisst du dass [mm] Z_n.....Z_4*1001 [/mm] durch 7 und 11 und 13 teilbar ist! also
Deine Zahl ist aber [mm] Z_n.....Z4*1000+Z_1Z_2Z_3 [/mm]
Gruss leduart

Bezug
                
Bezug
Teilbarkeitsregel für 7,11,13: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Do 22.11.2007
Autor: Baerenfan

HAllo. Ich sitze an dem selben PRoblem. Und bis zu dem Punkt

(Zn...Z4) * 1000 + Z1Z2Z3 kann ich noch mitkommen. Dann hörts auf. Wie gehe ich denn von da aus weiter?

Ich weiß, dass ich Zn...Z4 * 1001 in Zn...Z4* 1000+1 zerlegen kann, aber das bringt mich nicht weiter.

Noch eine Idee?

Bezug
                        
Bezug
Teilbarkeitsregel für 7,11,13: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Do 22.11.2007
Autor: rainerS

Hallo!

> HAllo. Ich sitze an dem selben PRoblem. Und bis zu dem
> Punkt
>
> (Zn...Z4) * 1000 + Z1Z2Z3 kann ich noch mitkommen. Dann
> hörts auf. Wie gehe ich denn von da aus weiter?
>  
> Ich weiß, dass ich Zn...Z4 * 1001 in Zn...Z4* 1000+1
> zerlegen kann, aber das bringt mich nicht weiter.

Dann bilde doch die Differenz von [mm]Z_n\dots Z_4 * (1000+1)[/mm] und [mm]Z_n\dots Z_4Z_3Z_2Z_1[/mm]

  Viele Grüße
    Rainer

Bezug
                                
Bezug
Teilbarkeitsregel für 7,11,13: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:45 Fr 23.11.2007
Autor: Soeckchen

Ich hab's immer noch nicht...
Also mit der Multiplikation hab ich glaube ich verstanden...daraus ergibt sich doch, dass ich die Ziffern von [mm] Z_{4} [/mm] bis [mm] Z_{n} [/mm] nicht mehr betrachten müsste, wenn ich zeigen kann, dass sie ein Vielfaches von 1001 sind, oder?
Dafür müsste ich mir eine 1 von [mm] Z_{1} [/mm] "klauen", also rechne ich
[mm] Z-(Z_{n};...;Z_{4})*(1000+1) [/mm] = [mm] (Z_{3}Z_{2}Z_{1}) [/mm] - 1
Also, wenn [mm] (Z_{3}Z_{2}Z_{1}) [/mm] - 1 teilbar ist durch 7/11/13, dann auch die Ganze Zahl? Aber das ist doch nicht meine Aufgabe, oder?
*großes Fragezeichen*

Bezug
                                        
Bezug
Teilbarkeitsregel für 7,11,13: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Fr 23.11.2007
Autor: rainerS

Hallo!

> Ich hab's immer noch nicht...
>  Also mit der Multiplikation hab ich glaube ich
> verstanden...daraus ergibt sich doch, dass ich die Ziffern
> von [mm]Z_{4}[/mm] bis [mm]Z_{n}[/mm] nicht mehr betrachten müsste, wenn ich
> zeigen kann, dass sie ein Vielfaches von 1001 sind, oder?
> Dafür müsste ich mir eine 1 von [mm]Z_{1}[/mm] "klauen", also rechne
> ich
>  [mm]Z-(Z_{n};...;Z_{4})*(1000+1)[/mm] = [mm](Z_{3}Z_{2}Z_{1})[/mm] - 1

[notok]

[mm]Z-(Z_{n};...;Z_{4})*(1000+1) = Z_n\dots Z_4Z_3Z_2Z_1 - Z_n\dots Z_4*1000 - Z_n\dots Z_4[/mm].

Bei den ersten zwei Termen hebt sich Alles weg bis auf [mm]Z_{3}Z_{2}Z_{1}[/mm], also steht noch
[mm]Z_{3}Z_{2}Z_{1} - Z_n\dots Z_4[/mm] da.

  Viele Grüße
    Rainer


Bezug
                                                
Bezug
Teilbarkeitsregel für 7,11,13: Verstanden
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 Fr 23.11.2007
Autor: Soeckchen

Super, jetzt ist der Groschen gefallen!
Vielen Dank allen, die sich beteiligt haben!!!

Bezug
                        
Bezug
Teilbarkeitsregel für 7,11,13: praktikable Teilbarkeitsregel
Status: (Antwort) fertig Status 
Datum: 10:26 Sa 01.12.2007
Autor: hkrug

Es gibt für 7, 11 und 13 eine sehr praktikable Teilbarkeitsregel, mit der man nicht nur prüfen kann, ob eine Zahl durch 7, 11 und 13 teilbar ist, sondern sogar, welchen Rest es beim Teilen gibt. Die Anwendung der Regel dauert bei einiger Übung so lange, wie es braucht, die Zahl zu schreiben, Die Regel funktioniert besonders gut auch bei langen Zahlen, z.B. hat man in wenigen Momemten raus, dass 98765432 beim Teilen durch 7 den Rest 3 ergibt und also nicht durch 7 teilbar ist. Diese Regel ist hier beschrieben und begründet:
[]http://mathematik.wordpress.com/2007/02/17/eine-praktikable-teilbarkeitsregel-fur-die-7/

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]