matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieTeilbarkeitsaussagen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Teilbarkeitsaussagen
Teilbarkeitsaussagen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeitsaussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Mi 15.05.2013
Autor: meister_quitte

Aufgabe
Beweisen Sie folgende Teilbarkeitsaussagen: Für alle ganzen Zahlen a, b, c, d, k, l gilt:

a) [mm] $d|a\Rightarrow [/mm] d|ab$

b) [mm] $d|c\wedge c|a\Rightarrow [/mm] d|a$

c) [mm] $d|a\wedge d|b\Rightarrow [/mm] d|ka+lb$

Hallo Leute,

ich wollte gerne wissen, ob meine Ansätze stimmen.

a)

Die Aussage gilt nicht. Gegenbeispiel: d=15, a=3, b=4

[mm] 3|15\Rightarrow [/mm] 12|15 Widerspruch.

b)

[mm] $d|c\iff c=x*d\wedge c|a\iff a=y*c\wedge d|a\iff [/mm] a=z*d$

[mm] $\Rightarrow a=y*x*d\Rightarrow [/mm] d|a$

c)

[mm] $d|a\iff a=x*d\wedge d|b\iff b=y*d\wedge [/mm] ka+lb=z*d$

[mm] $\Rightarrow [/mm] k(x*d)+l(y*d)=z*d$ d lässt sich kürzen. Damit [mm] gilt:$d|a\wedge d|b\Rightarrow [/mm] d|ka+lb$

Vielen Dank schon mal im Voraus für eure Hilfe.

Liebe Grüße

Christoph

        
Bezug
Teilbarkeitsaussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Mi 15.05.2013
Autor: angela.h.b.


> Beweisen Sie folgende Teilbarkeitsaussagen: Für alle
> ganzen Zahlen a, b, c, d, k, l gilt:

>

> a) [mm]d|a\Rightarrow d|ab[/mm]

>

> b) [mm]d|c\wedge c|a\Rightarrow d|a[/mm]

>

> c) [mm]d|a\wedge d|b\Rightarrow d|ka+lb[/mm]
> Hallo Leute,

>

> ich wollte gerne wissen, ob meine Ansätze stimmen.

>

> a)

>

> Die Aussage gilt nicht. Gegenbeispiel: d=15, a=3, b=4

>

> [mm]3|15\Rightarrow[/mm] 12|15 Widerspruch.

>

Hallo,

Dein Gegenbeispiel ist gar nicht überzeugend.
Du hast wohl Buchstabensalat gemacht.


> b)

>

> [mm]d|c\iff c=x*d\wedge c|a\iff a=y*c\wedge d|a\iff a=z*d[/mm]

>

> [mm]\Rightarrow a=y*x*d\Rightarrow d|a[/mm]

Du meinst es richtig, aufgeschrieben ist es grausig.

Es gelte d|c und c|a.

dann gibt es [mm] x,y\in \IZ [/mm] mit c=x*d und a=y*c.

Also ist [mm] a=y*(x*d)=\underbrace{(y*x)}_{\in \IZ}*d [/mm]

==> d|a.


>

> c)
> [mm]d|a\iff a=x*d\wedge d|b\iff b=y*d\wedge ka+lb=z*d[/mm]

>

> [mm]\Rightarrow k(x*d)+l(y*d)=z*d[/mm] d lässt sich kürzen. Damit
> gilt:[mm]d|a\wedge d|b\Rightarrow d|ka+lb[/mm]

Auch hier stimmt die grobe Idee, der Aufschrieb und "kürzen" ist nix.

Es gelte d|a und d|b, dh. es gibt [mm] x,y\in \IZ [/mm] mit

a=xd und b=yd.

Seien nun [mm] k\l\in \IZ. [/mm]

Es ist ka+lb=kxd+lyd= [mm] \underbrace{(kx+ly)}_{\in \IZ}d [/mm] ==> d|ka+lb.

LG Angela

Bezug
                
Bezug
Teilbarkeitsaussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Mi 15.05.2013
Autor: meister_quitte

Hallo Angela,
> Hallo,
>  
> Dein Gegenbeispiel ist gar nicht überzeugend.
>  Du hast wohl Buchstabensalat gemacht.
>  > LG Angela

ich weiß jetzt nicht so recht was ich genau falsch gemacht habe. Was meinst du?

Liebe Grüße

Christoph

Bezug
                        
Bezug
Teilbarkeitsaussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Mi 15.05.2013
Autor: angela.h.b.


> a) [mm] $d|a\Rightarrow [/mm] d|ab$


> Die Aussage gilt nicht.
> Gegenbeispiel: d=15, a=3, b=4

> [mm] 3|15\Rightarrow [/mm] 12|15 Widerspruch.

Hallo,

das ist doch Kokolores.
Es fängt damit an,daß Dein d Dein a nicht teilt, im Gegensatz zur Voraussetzung der kl. Aussage, die Du zeigen sollst.

LG Angela

 

Bezug
                                
Bezug
Teilbarkeitsaussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Mi 15.05.2013
Autor: meister_quitte

Hallo Angela,

jetzt peil' ich das erst. Dann geht die Aussage.

[mm] $a=d*x\wedge [/mm] ab=d*y$
[mm] $\Rightarrow (d*x)b=d*y\iff \underbrace{d*(xb-y)=0}_{\in\IZ}$ [/mm]

Ist es jetzt ok?

Liebe Grüße

Christoph

Bezug
                                        
Bezug
Teilbarkeitsaussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Mi 15.05.2013
Autor: Teufel

Hi!

Nein, du setzt ja schon voraus, was du eigentlich zeigen sollst!

Gegeben hast du $d|a$, also gibt es ein [mm] $x\in\IZ$ [/mm] sodass $a=dx$, das ist richtig. Zeigen sollst du nun $d|ab$ für jedes [mm] $b\in\IZ$, [/mm] also dass es ein [mm] y\in\IZ [/mm] gibt mit $ab=dy$ (das hast du vorher einfach schon vorausgesetzt!).

Ok, also es gilt $a=dx$. Rauskommen soll $ab=dy$. Wie kannst du das bewerkstelligen?

Bezug
                                                
Bezug
Teilbarkeitsaussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Mi 15.05.2013
Autor: meister_quitte

Hallo Teufel,

ich schätze man muss mit b malnehmen. Dann ist das b eine Konstante rechts der Gelichung und die Aussage ist wahr. Stimmt's?

$a=dx |*b [mm] \iff ab=d\underbrace{xb}_{\in\IZ}$ [/mm]

Liebe Grüße

Christoph



Bezug
                                                        
Bezug
Teilbarkeitsaussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Mi 15.05.2013
Autor: Teufel

Genau, dein y ist dann also gleich [mm] $xb\in\IZ$. [/mm]

Bezug
                                                                
Bezug
Teilbarkeitsaussagen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Mi 15.05.2013
Autor: meister_quitte

Vielen Dank an euch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]