matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenTdV nicht anwendbar =inhomogen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - TdV nicht anwendbar =inhomogen
TdV nicht anwendbar =inhomogen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

TdV nicht anwendbar =inhomogen: Typen von Differentialgleichun
Status: (Frage) beantwortet Status 
Datum: 15:08 Mi 15.07.2009
Autor: Loewenzahn

Aufgabe
Angenommen eine lineare DGL 1.O. ist nicht in der Form schreibbar, dass steht y'=.... und "..." ein Produkt ist, welches nur aus jew. nur x- und nur y-anhängigem Ausdruck besteht.
Dann ist diese Differentialgleichung doch inhomogen, oder?

Obige Frage dient mir zum Abklären, ob ich alles verstanden habe. Wir haben nämlich erstmal nur DGLs gehabt, wo das mit der TdV ging....DAher wollt ich das mal abklären.....wenn denn also TdV nicht geht, dann ist es eine inhomogene und ich muss das ganze "zwei geteilt" (einmal homogen mit tdv und dann partikulär mit VdK (Variation der Konstanten) lösen, richtig?


Hoffe doch und dankeschön :-)
LZ

        
Bezug
TdV nicht anwendbar =inhomogen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Mi 15.07.2009
Autor: fred97

Eine lineare DGL 1.Ordnung ist von der Gestalt

          (1)    $y'= a(x)y+b(x)$,

wobei a und b stetige Funktionen auf einem Intervall I sind

Die dazu gehörende homogene Gleichung ist

          (2)        $y'= a(x)y$.

Die Gleichung (2) kannst Du mit TDV lösen, einfacher ist aber folgendes:

Die allgemeine Lösung von (2) lautet:

                  $y(x) = [mm] ce^{A(x)}$ [/mm]     ( c [mm] \in \IR), [/mm]

wobei A eine Stammfunktion von a auf I ist.

Eine partikuliäre Lösung [mm] y_p [/mm] von (1) erhälst Du über den Ansatz:

                 [mm] $y_p(x) [/mm] = [mm] c(x)e^{A(x)}$ [/mm]

(Variation der Konstanten)

FRED

Bezug
                
Bezug
TdV nicht anwendbar =inhomogen: glaub, meine aussage stimmt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:18 Do 16.07.2009
Autor: Loewenzahn

Hm, genau das habe ich hier stehen...mir ging es ja genau darum, das mal in worte zu fassen...ob ich's verstanden habe...ein einfaches wäre (ausnahmsweise) hilfreicher als die definition....aber natürlich trotzdem danke für die mühe und ich deute das mal als zustimmung zu meiner aussage...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]