Tayorreihe/ Konverg. der Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:57 Di 28.02.2012 | Autor: | sergnant |
Aufgabe | Man ermittle die Taylorreihe von [mm] f(x)=\bruch{2}{x-4} [/mm] um x0=1 (Struktur [mm] \summe_{k=0}^{\infty}Ck(x-1)^k [/mm] )
Für welche [mm] X\varepsilon\IR [/mm] konvergiert die Reihe? |
Diese Aufgabe fand ich in meinen Aufzeichnungen, bald steht eine Klausur an in der eine ähnliche Aufgabe drankommen könnte. Leider kann ich die Rechenschritte die dann gemacht wurden aber nicht nachvollziehen. Als Antwort ist zu finden: [mm] \bruch{2}{x-4} [/mm] = [mm] \bruch{2}{-3+(x-1)} [/mm] = [mm] \bruch{2}{1-\bruch{(x-1)}{3}} [/mm] = [mm] \summe_{k=0}^{\infty}-\bruch{2}{3}(\bruch{x-1}{3})^k [/mm] = [mm] \summe_{k=0}^{\infty}-\bruch{2}{3^{k+1}}(x-1)^k
[/mm]
Desweiteren: Konvergenz für [mm] |\bruch{1}{3}(x-1)|<1 [/mm] .... wobei man nach Umformung dann auf -2<x<4 kommt.
Meine Probleme:
Was tue ich bei der ersten Umformung? Was bei der zweiten? Nachdem ich zwei mal umgeformt habe, erhalte ich ja die formel für die geometrische Reihe. Hierbei ist ja [mm] \bruch{(x-1)}{3}=q, [/mm] die weiteren Umformungen verstehe ich. Allerdings sehe ich nicht woher die [mm] \bruch{1}{3} [/mm] beim ersten Schritt der Prüfung auf Konvergenz kommen.
M.f.G.
|
|
|
|
Hallo sergnant,
> Man ermittle die Taylorreihe von [mm]f(x)=\bruch{2}{x-4}[/mm] um
> x0=1 (Struktur [mm]\summe_{k=0}^{\infty}Ck(x-1)^k[/mm] )
> Für welche [mm]X\varepsilon\IR[/mm] konvergiert die Reihe?
> Diese Aufgabe fand ich in meinen Aufzeichnungen, bald
> steht eine Klausur an in der eine ähnliche Aufgabe
> drankommen könnte. Leider kann ich die Rechenschritte die
> dann gemacht wurden aber nicht nachvollziehen. Als Antwort
> ist zu finden: [mm]\bruch{2}{x-4}[/mm] = [mm]\bruch{2}{-3+(x-1)}[/mm] = [mm]\bruch{2}{1-\bruch{(x-1)}{3}}[/mm] = [mm]\summe_{k=0}^{\infty}-\bruch{2}{3}(\bruch{x-1}{3})^k[/mm] =
> [mm]\summe_{k=0}^{\infty}-\bruch{2}{3^{k+1}}(x-1)^k[/mm]
> Desweiteren: Konvergenz für [mm]|\bruch{1}{3}(x-1)|<1[/mm] ....
> wobei man nach Umformung dann auf -2<x<4 kommt.<br="">> x<4
> Meine Probleme:
> Was tue ich bei der ersten Umformung?
Na, es geht ja darum, das Ganze auf die geometr. Reihe zurückzuführen, und du willst ja die Taylorreihe um [mm]x_0=1[/mm] haben, da brauchst du also [mm](x-1)[/mm]
Da hat man einfach die [mm]-4[/mm] anders geschrieben als [mm]-3-1[/mm] und anders geklammert
> Was bei der zweiten?
Da wurde [mm]-\frac{1}{3}[/mm] ausgeklammert, aber vergessen hinzuschreiben, richtig:
[mm]\frac{2}{-3+(x-1)}=-\frac{1}{3}\cdot{}\frac{2}{1-\frac{x-1}{3}}[/mm]
> Nachdem ich zwei mal umgeformt habe, erhalte ich ja die
> formel für die geometrische Reihe. Hierbei ist ja
> [mm]\bruch{(x-1)}{3}=q,[/mm]
genau!
> die weiteren Umformungen verstehe ich.
> Allerdings sehe ich nicht woher die [mm]\bruch{1}{3}[/mm] beim
> ersten Schritt der Prüfung auf Konvergenz kommen.
Na, vom [mm]q[/mm], das ist hier [mm]q=\frac{x-1}{3}[/mm] - siehe genauer weiter unten
Hmm, den letzten Schritt kann man sich sparen und insgesamt [mm]-\frac{2}{3}[/mm] ausgeklammern und vorziehen, du hast also
[mm]-\frac{2}{3}\cdot{}\frac{1}{1-\frac{x-1}{3}}=-\frac{2}{3}\cdot{}\sum\limits_{k=0}^{\infty}\left(\frac{x-1}{3}\right)^k=-\frac{2}{3}\cdot{}\sum\limits_{k=0}^{\infty}\left(\frac{1}{3}\right)^k\cdot{}(x-1)^k[/mm]
nach der Formel für die geometr. Reihe (für [mm]|q|=\left|\frac{x-1}{3}\right|<1[/mm]) nach dem ersten "=", sie letzte Summe kannst du noch durch Reinziehen von [mm]-2/3[/mm] in deine Darstellung bringen; die ist dann die gesuchte Darstellung als Potenzreihe in [mm]x_0=1[/mm]
> M.f.G.
>
Gruß
schachuzipus
</x<4>
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:16 Di 28.02.2012 | Autor: | sergnant |
Wunderbar und vielen Dank. Das hat mir schon mal sehr weitergeholfen. Lediglich den letzten Schritt verstehe ich nicht so ganz: "nach der Formel für die geometr. Reihe (für $ [mm] |q|=\left|\frac{x-1}{3}\right|<1 [/mm] $) nach dem ersten "=", sie letzte Summe kannst du noch durch Reinziehen von $ -2/3 $ in deine Darstellung bringen; die ist dann die gesuchte Darstellung als Potenzreihe in $ [mm] x_0=1 [/mm] $"
In welche Darstellung ziehe ich die [mm] -\bruch{2}{3}?
[/mm]
M.f.G.
|
|
|
|
|
Hallo nochmal,
> Wunderbar und vielen Dank. Das hat mir schon mal sehr
> weitergeholfen. Lediglich den letzten Schritt verstehe ich
> nicht so ganz: "nach der Formel für die geometr. Reihe
> (für [mm]|q|=\left|\frac{x-1}{3}\right|<1 [/mm]) nach dem ersten
> "=", sie letzte Summe kannst du noch durch Reinziehen von
> [mm]-2/3[/mm] in deine Darstellung bringen; die ist dann die
> gesuchte Darstellung als Potenzreihe in [mm]x_0=1 [/mm]"
> In welche
> Darstellung ziehe ich die [mm]-\bruch{2}{3}?[/mm]
Nach dem ersten "=" hatten wir [mm]-\frac{2}{3}\cdot{}\sum\limits_{k=0}^{\infty}\left(\frac{x-1}{3}\right)^k[/mm]
Und von dieser Reihe bestimmen wir den Konvergenzradius.
Der Vorfaktor [mm]-\frac{2}{3}[/mm] ändert daran ja nix ...
Um nachher die geforderte Darstellung als Taylorreihe ohne Vorfaktor zu haben, packen wir die [mm]-\frac{2}{3}[/mm] wieder in die Reihe.
Also [mm]-\frac{2}{3}\cdot{}\sum\limits_{k=0}^{\infty}\left(\frac{x-1}{3}\right)^k=-\frac{2}{3}\cdot{}\sum\limits_{k=0}^{\infty}\frac{1}{3^k}\cdot{}\left(x-1\right)^k=\sum\limits_{k=0}^{\infty}-\frac{2}{3}\cdot{}\frac{1}{3^k}\cdot{}\left(x-1\right)^k=\sum\limits_{k=0}^{\infty}-\frac{2}{3^{k+1}}\cdot{}\left(x-1\right)^k[/mm]
Damit hast du schön die Taylorreihe stehen ohne viel Abeitungsgedöhns und elegant durch Rückgriff auf eine wohlbekannte geometr. Reihe ...
> M.f.G.
Gruß
schachuzipus
|
|
|
|