Taylorreihe von cos(exp (z)) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 17:04 Fr 12.12.2008 | Autor: | grenife |
Aufgabe | Bestimmen Sie die Taylorreihe um $0$ der Funktion [mm] $f:=\cos\circ\exp$ [/mm] und geben Sie deren Konvergenzradius an. |
Hallo zusammen,
wollte kurz meinen Lösungsansatz skizzieren und wäre wieder dankbar, wenn jemand diesen kommentieren könnte, bevor ich in eine Sackgasse renne
Prinzipiell würde ich zwei Wege sehen, zum einen könnte ich sturr die Potenzreihen für die Funktionen aufschreiben und ineinanderschachteln. Da müsste ich aber vermutlich einiges an Umformungen vornehmen, die möglicherweise nicht gerade trivial sind.
Als andere Möglichkeit würde ich die direkte Bestimmung der Taylor-Koeffizienten [mm] $\frac{f^{(n)}(0)}{n!}$ [/mm] ansehen, wobei ich aber nicht wirklich ein Entstehungsgesetz bei den Ableitungen von [mm] $\cos\circ\exp$ [/mm] erkennen kann (der Beweis müsste ja auch induktiv erfolgen):
[mm] $f(0)=\cos(\exp(0))=\cos(1)$
[/mm]
[mm] $f'(0)=-\sin(\exp(0))\cdot \exp(0)=-\sin(1)$
[/mm]
[mm] $f''(0)=-\cos(\exp(0))\cdot\exp(0)\cdot\exp(0)-\sin(\exp(0))\cdot\exp(0)=-\cos(1)-\sin(1)$
[/mm]
Vielen Dank für Eure Mühe und viele Grüße
Gregor
|
|
|
|
> Bestimmen Sie die Taylorreihe um [mm]0[/mm] der Funktion
> [mm]f:=\cos\circ\exp[/mm] und geben Sie deren Konvergenzradius an.
> Prinzipiell würde ich zwei Wege sehen, zum einen könnte ich
> stur die Potenzreihen für die Funktionen aufschreiben und
> ineinanderschachteln. Da müsste ich aber vermutlich einiges
> an Umformungen vornehmen, die möglicherweise nicht gerade
> trivial sind.
> Als andere Möglichkeit würde ich die direkte Bestimmung der
> Taylor-Koeffizienten [mm]\frac{f^{(n)}(0)}{n!}[/mm] ansehen, wobei
> ich aber nicht wirklich ein Entstehungsgesetz bei den
> Ableitungen von [mm]\cos\circ\exp[/mm] erkennen kann (der Beweis
> müsste ja auch induktiv erfolgen):
>
> [mm]f(0)=\cos(\exp(0))=\cos(1)[/mm]
> [mm]f'(0)=-\sin(\exp(0))\cdot \exp(0)=-\sin(1)[/mm]
>
> [mm]f''(0)=-\cos(\exp(0))\cdot\exp(0)\cdot\exp(0)-\sin(\exp(0))\cdot\exp(0)=-\cos(1)-\sin(1)[/mm]
>
> Vielen Dank für Eure Mühe und viele Grüße
> Gregor
Hallo Gregor,
man kann beide Wege versuchen. Zuerst schien mir der erste
hoffnungslos kompliziert. Aber dann merkte ich, dass auch der
zweite Weg mit den Ableitungen wegen der fortgesetzt komplexer
werdenden Anwendung von Produktregel und Kettenregel nicht
gerade vergnüglich ist.
So kehrte ich zum ersten Weg zurück und habe gemerkt, dass
der vielleicht doch nicht so schlimm ist.
Es ist
[mm] cos(u)=1-\bruch{u^2}{2!}+\bruch{u^4}{4!}-\bruch{u^6}{6!}+\bruch{u^8}{8!}- [/mm] .......
und [mm] e^x=1+x+\bruch{x^2}{2!}+\bruch{x^3}{3!}+\bruch{x^4}{4!}+ [/mm] .......
Das Einsetzen der zweiten Reihe für jedes in der ersten Reihe
stehende u wäre tatsächlich eine fürchterliche Sache, die uns
aber glücklicherweise erspart wird, weil [mm] (e^x)^k=e^{k*x} [/mm] ist !
Es gilt
$\ [mm] f(x)=cos(e^x)=1-\bruch{e^{2*x}}{2!}+\bruch{e^{4*x}}{4!}-\bruch{e^{6*x}}{6!}+\bruch{e^{8*x}}{8!}- [/mm] .......$
$\ =\ 1$
$\ [mm] -\bruch{1}{2!}*(1+2*x+\bruch{(2*x)^2}{2!}+\bruch{(2*x)^3}{3!}+\bruch{(2*x)^4}{4!}+ [/mm] .......)$
$\ [mm] +\bruch{1}{4!}*(1+4*x+\bruch{(4*x)^2}{2!}+\bruch{(4*x)^3}{3!}+\bruch{(4*x)^4}{4!}+ [/mm] .......)$
$\ [mm] -\bruch{1}{6!}*(1+6*x+\bruch{(6*x)^2}{2!}+\bruch{(6*x)^3}{3!}+\bruch{(6*x)^4}{4!}+ [/mm] .......)$
$\ [mm] +\bruch{1}{8!}*(1+8*x+\bruch{(8*x)^2}{2!}+\bruch{(8*x)^3}{3!}+\bruch{(8*x)^4}{4!}+ [/mm] .......)$
etc.
Sammelt man nun die Potenzen von x mit gleichen Exponenten,
so erhält man:
$\ f(x)\ =\ [mm] (1-\bruch{1}{2!}+\bruch{1}{4!}-\bruch{1}{6!}+\bruch{1}{8!}- [/mm] .......)$
[mm] +x*(-\bruch{2}{2!}+\bruch{4}{4!}-\bruch{6}{6!}+\bruch{8}{8!}- [/mm] .......)
[mm] +\bruch{x^2}{2!}*(-\bruch{2^2}{2!}+\bruch{4^2}{4!}-\bruch{6^2}{6!}+\bruch{8^2}{8!}- [/mm] .......)
[mm] +\bruch{x^3}{3!}*(-\bruch{2^3}{2!}+\bruch{4^3}{4!}-\bruch{6^3}{6!}+\bruch{8^3}{8!}- [/mm] .......)
[mm] +\bruch{x^4}{4!}*(-\bruch{2^4}{2!}+\bruch{4^4}{4!}-\bruch{6^4}{6!}+\bruch{8^4}{8!}- [/mm] .......)
etc.
Nun werden die Koeffizienten der Taylorreihe T(x) selbst durch
Reihen dargestellt:
Setzen wir [mm] T(x)=\summe_{k=0}^{\infty}t_k*x^k [/mm] , so gilt:
$\ [mm] t_0=1-\bruch{1}{2!}+\bruch{1}{4!}-\bruch{1}{6!}+\bruch{1}{8!}- [/mm] .......\ =\ cos(1)$
$\ [mm] t_1=-\bruch{2}{2!}+\bruch{4}{4!}-\bruch{6}{6!}+\bruch{8}{8!}- .......=-\bruch{1}{1!}+\bruch{1}{3!}-\bruch{1}{5!}+\bruch{1}{7!}- [/mm] .......\ =\ -sin(1)$
$\ [mm] t_k=\bruch{1}{k!}*\summe_{i=1}^{\infty}\bruch{(-2*i)^{k}}{(2*i)!}$ [/mm] $\ [mm] (k\ge [/mm] 1)$
Bei den Methoden zur Bestimmung des Konvergenzradius'
kenne ich mich nicht so aus. Ich vermute aber, dass er
hier unendlich ist.
LG
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:15 Sa 13.12.2008 | Autor: | felixf |
Hallo zusammen
> Bei den Methoden zur Bestimmung des Konvergenzradius'
> kenne ich mich nicht so aus. Ich vermute aber, dass er
> hier unendlich ist.
Ist er auch, und mit etwas mehr Wissen ueber die Funktionentheorie kann man das auch direkt sagen ohne nachdenken zu muessen [mm] ($\cos \circ \exp$ [/mm] ist eine ganze Funktion).
LG Felix
|
|
|
|
|
> Als andere Möglichkeit würde ich die direkte Bestimmung der
> Taylor-Koeffizienten [mm]\frac{f^{(n)}(0)}{n!}[/mm] ansehen, wobei
> ich aber nicht wirklich ein Entstehungsgesetz bei den
> Ableitungen von [mm]\cos\circ\exp[/mm] erkennen kann (der Beweis
> müsste ja auch induktiv erfolgen):
>
> [mm]f(0)=\cos(\exp(0))=\cos(1)[/mm]
> [mm]f'(0)=-\sin(\exp(0))\cdot \exp(0)=-\sin(1)[/mm]
> [mm]f''(0)=-\cos(\exp(0))\cdot\exp(0)\cdot\exp(0)-\sin(\exp(0))\cdot\exp(0)=-\cos(1)-\sin(1)[/mm]
Hallo Gregor,
Um diese Liste der Ableitungen etwas weiter zu führen,
habe ich ein kleines Programm geschrieben, das die
jeweiligen Vorfaktoren von cos(1) und sin(1) in den
Ableitungen [mm] f^{(k)}(0) [/mm] berechnet. Dabei ist folgendes
herausgekommen:
[mm]f(0)=\cos(1)[/mm]
[mm]f'(0)=-\sin(1)[/mm]
[mm]f''(0)=-\cos(1)-\sin(1)[/mm]
[mm]f'''(0)=-3*\cos(1)[/mm]
[mm]f^{(4)}(0)=-6*\cos(1)+5*\sin(1)[/mm]
[mm]f^{(5)}(0)=-5*\cos(1)+23*\sin(1)[/mm]
[mm]f^{(6)}(0)=33*\cos(1)+74*\sin(1)[/mm]
[mm]f^{(7)}(0)=266*\cos(1)+161*\sin(1)[/mm]
[mm]f^{(8)}(0)=1309*\cos(1)-57*\sin(1)[/mm]
..........
Dieser Anfang zeigt, dass es schwer fallen dürfte,
eine allgemeine Regel zu entdecken, die man dann
mittels vollständiger Induktion beweisen könnte.
LG al-Chwarizmi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Di 16.12.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|