Taylorreihe als Binomialreihe < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:47 So 20.04.2008 | Autor: | JulianTa |
Aufgabe | Sei s [mm] \in \IR [/mm] und f: (-1, [mm] \infty) \to \IR [/mm] durch [mm] f(x)=(1+x)^s [/mm] definiert.
(a) Zeige: Die Taylorreihe zu f in 0 ist die Binomialreihe [mm] B_s(x)=\summe_{k=1}^{\infty}\vektor{s \\ k}x^k. [/mm] |
Hallo!
mein Problem liegtr eigentlich nur darin, dass ich nicht weiss, wie ich darstellen soll, dass die Summe bis unendlich läuft. Ich hab erstmal die Taylorreihe bis n dargestellt als:
[mm] 1+sx+\frac{s(s-1)}{2}x^2+\frac{s(s-1)(s-2)}{6}x^3+...+\frac{s(s-1)*...*(s-(s-1)}{n!}x^n.
[/mm]
Dann ist ja leicht zu erkennen, dass das gleich der Binomialreihe [mm] \summe_{k=0}^{n}x^k= \vektor{s \\ 0}x^0+\vektor{s \\ 1}x^1+\vektor{s \\ 2}x^2+...+\vektor{s \\ n}x^n=1+sx+\frac{s(s-1)}{2}x^2+...+\frac{s(s-1)(s-2)*...*(s-(n-1)}{n!}x^n [/mm] ist.
Aber damit hab ich ja nur das ganze bis n gelöst, nicht bis unendlich. Wie bekomme ich das jetzt hin?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo JulianTa,
> Sei s [mm]\in \IR[/mm] und f: (-1, [mm]\infty) \to \IR[/mm] durch
> [mm]f(x)=(1+x)^s[/mm] definiert.
> (a) Zeige: Die Taylorreihe zu f in 0 ist die Binomialreihe
> [mm]B_s(x)=\summe_{k=1}^{\infty}\vektor{s \\ k}x^k.[/mm]
> Hallo!
> mein Problem liegtr eigentlich nur darin, dass ich nicht
> weiss, wie ich darstellen soll, dass die Summe bis
> unendlich läuft. Ich hab erstmal die Taylorreihe bis n
> dargestellt als:
>
> [mm]1+sx+\frac{s(s-1)}{2}x^2+\frac{s(s-1)(s-2)}{6}x^3+...+\frac{s(s-1)*...*(s-(s-1)}{n!}x^n.[/mm]
> Dann ist ja leicht zu erkennen, dass das gleich der
> Binomialreihe [mm]\summe_{k=0}^{n}x^k= \vektor{s \\ 0}x^0+\vektor{s \\ 1}x^1+\vektor{s \\ 2}x^2+...+\vektor{s \\ n}x^n=1+sx+\frac{s(s-1)}{2}x^2+...+\frac{s(s-1)(s-2)*...*(s-(n-1)}{n!}x^n[/mm]
> ist.
> Aber damit hab ich ja nur das ganze bis n gelöst, nicht
> bis unendlich. Wie bekommeAls Du die Taylorreihe hergeleitet hast, ich das jetzt hin?
Aus der Bauart der Koeffizienten kannst Du bestimmt auf eine Formel für dieselbigen schliessen.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruß
MathePower
|
|
|
|