matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungTaylorreihe Restglied
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Taylorreihe Restglied
Taylorreihe Restglied < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe Restglied: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Do 20.01.2011
Autor: Martinius

Aufgabe
Aufgabe 12 a)

Für das Restglied der Taylorentwicklung einer beliebigen (n+1) mal differenzierbaren Funktion f an der Stelle [mm] x_0 [/mm] gilt:

[mm] $R_n(x) \; [/mm] = [mm] \; \frac{f^{(n+1)}(x_o)}{(n+1)!}*(x-x_0)^{n+1}$ [/mm]   ;   [mm] $x_o \in ]x_0 [/mm] ; x[$


a) Zeige, dass sich [mm] R_n(x) [/mm] durch die Ungleichung

[mm] $k_u*\frac{x^{n+1}}{(n+1)!} \; \le \; R_n(x) \; \le \; k_o*\frac{x^{n+1}}{(n+1)!}$ [/mm]

abschätzen lässt. Dabei ist [mm] k_u [/mm] der minimale und [mm] k_o [/mm] der maximale Wert für [mm] f^{(n+1)}(t) [/mm] für $t [mm] \in [/mm] [0 ; x]$ .


Hallo,

ich habe zwar das Lösungsbuch zu diesem Schulbuch (Analysis LK; "Elemente der Mathematik", Schrodel-Verlag) vorliegen, - damit ich hier im Forum nicht so viele Leute mit meinen Fragen belästigen muss - aber meiner Schätzung nach sind in round about 15% der Lösungen fehlerhaft.

Die Lösung zu 12 a):

(1)  [mm] $k_u \; \le \; f^{(n+1)} \; \le \; k_o$ [/mm]


(2)  [mm] $\int^{x}_{0} k_u \; [/mm] dt [mm] \; \le \; \int^{x}_{0} f^{(n+1)} \; [/mm] dt [mm] \; \le \; \int^{x}_{0} k_o \; [/mm] dt $


(3)  $ [mm] k_u*x \; \le \; f^{(n)}(x)-f^{n}(0) \; \le \; k_o*x [/mm]   $


(4)  [mm] $\int^{x}_{0} k_u*x \; [/mm] dt [mm] \; \le \; \int^{x}_{0} [f^{(n)}(t) -f^{(n)}(0)]\; [/mm] dt [mm] \; \le \; \int^{x}_{0} k_o*x \; [/mm] dt $


(5)  $ [mm] \frac{1}{2} *k_u*x^2 \; \le \; f^{(n-1)}(x)- f^{(n-1)}(0)-x*f^{n}(0) \; \le \; \frac{1}{2}*k_o*x^2 [/mm]   $


(6)  $ [mm] \frac{1}{2} *k_u*x^2 \; \le \; f^{(n-1)}(x)- f^{(n-1)}(0)-x*f^{n}(0) \; \le \; \frac{1}{2}*k_o*x^2 [/mm]   $


(7)  $ [mm] \frac{1}{2*3} *k_u*x^3 \; \le \; f^{(n-2)}(x) [/mm] - [mm] f^{(n-2)}(0)- x*f^{(n-1)}(0)-\frac{1}{2}*x^2*f^{n}(0) \; \le \; \frac{1}{2*3}*k_o*x^3 [/mm]   $


usw.


(8)  $ [mm] \frac{1}{(n+1)!} *k_u*x^{n+1} \; \le \; [/mm] f(x)-f(0)- f'(0)*x - [mm] \frac{f''(0)}{2}*x^2 [/mm] - [mm] \frac{f'''(0)}{2*3}*x^3 [/mm]  -...- [mm] \frac{f^{(n)(0)}}{n!}*x^n \; \le \; \frac{1}{(n+1)!}*k_o*x^{n+1} [/mm]   $


Also

(9)   [mm] $\frac{1}{(n+1)!}*k_u*x^{n+1} \; \le \; R_n(x) \; \le \; k_o*\frac{x^{n+1}}{(n+1)!}$ [/mm]



Nun meine erste Frage:

Wie kommt man von Schritt (4) auf Schritt (5)?

Wo kommt der Faktor [mm] \frac{1}{2} [/mm] her? Müsste man dazu nicht erst die Variable x in t - Schritt (4) - umbenennen - oder wie?


Vielen Dank für eine Antwort.

LG, Martin









        
Bezug
Taylorreihe Restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Do 20.01.2011
Autor: MathePower

Hallo Martinius,

> Aufgabe 12 a)
>  
> Für das Restglied der Taylorentwicklung einer beliebigen
> (n+1) mal differenzierbaren Funktion f an der Stelle [mm]x_0[/mm]
> gilt:
>  
> [mm]R_n(x) \; = \; \frac{f^{(n+1)}(x_o)}{(n+1)!}*(x-x_0)^{n+1}[/mm]  
>  ;   [mm]x_o \in ]x_0 ; x[[/mm]
>  
>
> a) Zeige, dass sich [mm]R_n(x)[/mm] durch die Ungleichung
>
> [mm]k_u*\frac{x^{n+1}}{(n+1)!} \; \le \; R_n(x) \; \le \; k_o*\frac{x^{n+1}}{(n+1)!}[/mm]
>  
> abschätzen lässt. Dabei ist [mm]k_u[/mm] der minimale und [mm]k_o[/mm] der
> maximale Wert für [mm]f^{(n+1)}(t)[/mm] für [mm]t \in [0 ; x][/mm] .
>  Hallo,
>  
> ich habe zwar das Lösungsbuch zu diesem Schulbuch
> (Analysis LK; "Elemente der Mathematik", Schrodel-Verlag)
> vorliegen, - damit ich hier im Forum nicht so viele Leute
> mit meinen Fragen belästigen muss - aber meiner Schätzung
> nach sind in round about 15% der Lösungen fehlerhaft.
>  
> Die Lösung zu 12 a):
>  
> (1)  [mm]k_u \; \le \; f^{(n+1)} \; \le \; k_o[/mm]
>  
>
> (2)  [mm]\int^{x}_{0} k_u \; dt \; \le \; \int^{x}_{0} f^{(n+1)} \; dt \; \le \; \int^{x}_{0} k_o \; dt[/mm]
>  
>
> (3)  [mm]k_u*x \; \le \; f^{(n)}(x)-f^{n}(0) \; \le \; k_o*x [/mm]
>  
>
> (4)  [mm]\int^{x}_{0} k_u*x \; dt \; \le \; \int^{x}_{0} [f^{(n)}(t) -f^{(n)}(0)]\; dt \; \le \; \int^{x}_{0} k_o*x \; dt[/mm]
>  
>
> (5)  [mm]\frac{1}{2} *k_u*x^2 \; \le \; f^{(n-1)}(x)- f^{(n-1)}(0)-x*f^{n}(0) \; \le \; \frac{1}{2}*k_o*x^2 [/mm]
>  
>
> (6)  [mm]\frac{1}{2} *k_u*x^2 \; \le \; f^{(n-1)}(x)- f^{(n-1)}(0)-x*f^{n}(0) \; \le \; \frac{1}{2}*k_o*x^2 [/mm]
>  
>
> (7)  [mm]\frac{1}{2*3} *k_u*x^3 \; \le \; f^{(n-2)}(x) - f^{(n-2)}(0)- x*f^{(n-1)}(0)-\frac{1}{2}*x^2*f^{n}(0) \; \le \; \frac{1}{2*3}*k_o*x^3 [/mm]
>  
>
> usw.
>  
>
> (8)  [mm]\frac{1}{(n+1)!} *k_u*x^{n+1} \; \le \; f(x)-f(0)- f'(0)*x - \frac{f''(0)}{2}*x^2 - \frac{f'''(0)}{2*3}*x^3 -...- \frac{f^{(n)(0)}}{n!}*x^n \; \le \; \frac{1}{(n+1)!}*k_o*x^{n+1} [/mm]
>  
>
> Also
>  
> (9)   [mm]\frac{1}{(n+1)!}*k_u*x^{n+1} \; \le \; R_n(x) \; \le \; k_o*\frac{x^{n+1}}{(n+1)!}[/mm]
>  
>
>
> Nun meine erste Frage:
>
> Wie kommt man von Schritt (4) auf Schritt (5)?
>  
> Wo kommt der Faktor [mm]\frac{1}{2}[/mm] her? Müsste man dazu nicht
> erst die Variable x in t - Schritt (4) - umbenennen - oder
> wie?
>  


Ja, hast Du recht:

[mm]\int^{x}_{0} k_u\cdot{}\blue{t} \; dt \; \le \; \int^{x}_{0} [f^{(n)}(t) -f^{(n)}(0)]\; dt \; \le \; \int^{x}_{0} k_o\cdot{}\blue{t} \; dt [/mm]


>
> Vielen Dank für eine Antwort.
>  
> LG, Martin
>  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]