matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylorreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Taylorreihe
Taylorreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 Di 06.11.2012
Autor: Trolli

Aufgabe
Sei [mm] $[-1,\infty]\to\IR$ [/mm] gegeben durch [mm] $f(x)=x*\sqrt{x+1}$. [/mm]

Bestimmen Sie das Taylorpolynom 4. Grades um [mm] $x_0=0$. [/mm]

Hallo,

habe ein Problem beim zusammenfassen der 3. Ableitung.

[mm] $f'(x)=(x+1)^{0.5}+x*0.5*(x+1)^{-0.5}=\sqrt{x+1}+\frac{x}{2\sqrt{x+1}}=\frac{3x+2}{2\sqrt{x+1}}$ [/mm]

[mm] $f''(x)=\frac{6\sqrt{x+1}-(3x+2)(x+1)^{-0.5}}{4(x+1)}=\frac{6\sqrt{x+1}-\frac{3x+2}{\sqrt{x+1}}}{4(x+1)}=\frac{6(x+1)-(3x+2)}{\sqrt{x+1}}*\frac{1}{4(x+1)}=\frac{3x+4}{4(x+1)^{\frac{3}{2}}}$ [/mm]

[mm] $f'''(x)=\frac{12(x+1)^{\frac{3}{2}}-(3x+4)*6(x+1)^{\frac{1}{2}}}{16(x+1)^3}=......=-\frac{3(x+2)}{8(x+1)^{\frac{5}{2}}}$ [/mm]

Hier komme ich gerade nicht weiter. Habe ein paar verschiedene Umformungen versucht, aber ich bekomme es irgendwie nicht zusammengefasst.

Schonmal danke für Tipps.

        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Di 06.11.2012
Autor: MathePower

Hallo Trolli,

> Sei [mm][-1,\infty]\to\IR[/mm] gegeben durch [mm]f(x)=x*\sqrt{x+1}[/mm].
>  
> Bestimmen Sie das Taylorpolynom 4. Grades um [mm]x_0=0[/mm].
>  Hallo,
>  
> habe ein Problem beim zusammenfassen der 3. Ableitung.
>  
> [mm]f'(x)=(x+1)^{0.5}+x*0.5*(x+1)^{-0.5}=\sqrt{x+1}+\frac{x}{2\sqrt{x+1}}=\frac{3x+2}{2\sqrt{x+1}}[/mm]
>  
> [mm]f''(x)=\frac{6\sqrt{x+1}-(3x+2)(x+1)^{-0.5}}{4(x+1)}=\frac{6\sqrt{x+1}-\frac{3x+2}{\sqrt{x+1}}}{4(x+1)}=\frac{6(x+1)-(3x+2)}{\sqrt{x+1}}*\frac{1}{4(x+1)}=\frac{3x+4}{4(x+1)^{\frac{3}{2}}}[/mm]
>  
> [mm]f'''(x)=\frac{12(x+1)^{\frac{3}{2}}-(3x+4)*6(x+1)^{\frac{1}{2}}}{16(x+1)^3}=......=-\frac{3(x+2)}{8(x+1)^{\frac{5}{2}}}[/mm]
>  


Klammere [mm]\wurzel{x+1}[/mm] aus.


> Hier komme ich gerade nicht weiter. Habe ein paar
> verschiedene Umformungen versucht, aber ich bekomme es
> irgendwie nicht zusammengefasst.
>  


Dann poste doch, was Du bisher versucht hast.


> Schonmal danke für Tipps.



Gruss
MathePower

Bezug
                
Bezug
Taylorreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Di 06.11.2012
Autor: Trolli


>
> Dann poste doch, was Du bisher versucht hast.
>  

Sorry, hatte schon Mühe beim eingeben der Gleichungen und war froh als die drin waren ;)

Danke für den Tipp. Damit hat alles geklappt und ich komme auch auf die 4. Ableitung:

[mm] $f^{(4)}(x)=\frac{9x+24}{16(x+1)^{\frac{7}{2}}}$ [/mm]


[mm] $\Rightarrow [/mm] f(0)=0, f'(0)=1, f''(0)=1, [mm] f'''(0)=-\frac{3}{4}, f^{4}(0)=\frac{3}{2}$ [/mm]

[mm] $\Rightarrow T_{4,0}=x+\frac{1}{2}x^2-\frac{1}{8}x^3+\frac{1}{16}x^4$ [/mm]

Alles korrekt?

Bezug
                        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Di 06.11.2012
Autor: MathePower

Hallo Trolli,

> >
> > Dann poste doch, was Du bisher versucht hast.
>  >  
>
> Sorry, hatte schon Mühe beim eingeben der Gleichungen und
> war froh als die drin waren ;)
>  
> Danke für den Tipp. Damit hat alles geklappt und ich komme
> auch auf die 4. Ableitung:
>  
> [mm]f^{(4)}(x)=\frac{9x+24}{16(x+1)^{\frac{7}{2}}}[/mm]
>  
>
> [mm]\Rightarrow f(0)=0, f'(0)=1, f''(0)=1, f'''(0)=-\frac{3}{4}, f^{4}(0)=\frac{3}{2}[/mm]
>  
> [mm]\Rightarrow T_{4,0}=x+\frac{1}{2}x^2-\frac{1}{8}x^3+\frac{1}{16}x^4[/mm]
>  
> Alles korrekt?


Ja. [ok]



Gruss
MathePower

Bezug
                                
Bezug
Taylorreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Di 06.11.2012
Autor: Trolli

Aufgabe
Bestimmen Sie die ersten drei Terme der Taylor-Entwicklung für die Umkehrfunktion.

Ich habe noch eine Extra Aufgabe. Ist die Umkehrfunktion so korrekt?

[mm] $y=x*\sqrt{x+1}$ [/mm]
[mm] $y^2=x^2*(x+1)$ [/mm]
[mm] $y^2=x^3*x^2=x^5$ [/mm]
[mm] $\Rightarrow x=\wurzel[5]{y^2}$ [/mm]

Dann Ableitungen bestimmen und wieder Taylorpolynom...

Bezug
                                        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Di 06.11.2012
Autor: MathePower

Hallo Trolli,

> Bestimmen Sie die ersten drei Terme der Taylor-Entwicklung
> für die Umkehrfunktion.
>  Ich habe noch eine Extra Aufgabe. Ist die Umkehrfunktion
> so korrekt?
>  
> [mm]y=x*\sqrt{x+1}[/mm]
>  [mm]y^2=x^2*(x+1)[/mm]
>  [mm]y^2=x^3*x^2=x^5[/mm]


Hier muss doch stehen:

[mm]y^2=x^3\blue{+}x^2[/mm]


>  [mm]\Rightarrow x=\wurzel[5]{y^2}[/mm]
>  
> Dann Ableitungen bestimmen und wieder Taylorpolynom...


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]