matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationTaylorreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Taylorreihe
Taylorreihe < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Di 24.07.2012
Autor: Trikolon

Aufgabe
Gegeben sie die Funktion f:IR--->IR mit f(x)= exp(1/x) für x<0 und 0 für x [mm] \ge [/mm] 0.
a) Zeige, dass f unendlich oft diffbar ist.
b) Bestimme die Tayorreihe im Punkt 0.
c) Für welche x [mm] \in [/mm] IR konvergiert die Taylorreihe gegen f.



a) Außerhalb der 0 ist die Diffbarkeit klar (Komposition diffbarer Funktionen)
Für die Ableitung gilt, wenn x<0: f'(x)= exp(1/x) * (- [mm] \bruch{1}{x^2} [/mm] ),
f''(x)= exp(1/x)* ( - [mm] \bruch{1}{x^2}) [/mm] + exp(1/x)* [mm] \bruch{2}{x^3}. [/mm]
Allgemein: P(1/x) * exp(1/x) , ich denke man braucht die Ableitung nicht explizit anzugeben. Wobei P ein Polynom vom Grad n+1 ist.
Im Punkt 0 filt: [mm] f^n [/mm] (0)=0. Es ist noch [mm] \limes_{x\rightarrow 0} \bruch{1}{x} [/mm] * P(1/x) * exp(1/x) = 0 .

b) Hier fängt das Problem an, ich kenne zwar die Taylor-Formel, aber wie gehe ich hier vor?  Die Ableitung an der Stelle 0 ist ja immer 0.... Danke schonmal für eure Hilfe!

c) Ist hier dann die Antwort, da die Taylorreihe 0 ist, für alle x [mm] \ge [/mm] 0.

        
Bezug
Taylorreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:50 Di 24.07.2012
Autor: Trikolon

Gibt's Ideen bzw. was von dem was ich geschrieben hatte, stimmt?

Bezug
                
Bezug
Taylorreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:02 Mi 25.07.2012
Autor: Trikolon

Muss man die Ableitung eigentlich nochn zwingend induktiv beweisen?

Bezug
        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Mi 25.07.2012
Autor: fred97


> Gegeben sie die Funktion f:IR--->IR mit f(x)= exp(1/x) für
> x<0 und 0 für x [mm]\ge[/mm] 0.
> a) Zeige, dass f unendlich oft diffbar ist.
>  b) Bestimme die Tayorreihe im Punkt 0.
>  c) Für welche x [mm]\in[/mm] IR konvergiert die Taylorreihe gegen
> f.
>  
>
> a) Außerhalb der 0 ist die Diffbarkeit klar (Komposition
> diffbarer Funktionen)
>  Für die Ableitung gilt, wenn x<0: f'(x)= exp(1/x) * (-
> [mm]\bruch{1}{x^2}[/mm] ),
> f''(x)= exp(1/x)* ( - [mm]\bruch{1}{x^2})[/mm] + exp(1/x)*
> [mm]\bruch{2}{x^3}.[/mm]
>  Allgemein: P(1/x) * exp(1/x) , ich denke man braucht die
> Ableitung nicht explizit anzugeben. Wobei P ein Polynom vom
> Grad n+1 ist.

Ja, für x<0 ist das richtig. Zeige das mit Induktion.


>  Im Punkt 0 filt: [mm]f^n[/mm] (0)=0. Es ist noch
> [mm]\limes_{x\rightarrow 0} \bruch{1}{x}[/mm] * P(1/x) * exp(1/x) =
> 0 .
>  
> b) Hier fängt das Problem an, ich kenne zwar die
> Taylor-Formel, aber wie gehe ich hier vor?  Die Ableitung
> an der Stelle 0 ist ja immer 0....


Dann sieht die Taylorrihe so aus:

[mm] \summe_{n=0}^{\infty}a_n*x^n, [/mm] wobei alle [mm] a_n [/mm] = 0 sind.




> Danke schonmal für eure
> Hilfe!
>  
> c) Ist hier dann die Antwort, da die Taylorreihe 0 ist,
> für alle x [mm]\ge[/mm] 0.

Ja

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]