matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisTaylorreihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Taylorreihe
Taylorreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Mi 30.05.2012
Autor: MaxPlanck

Hallo Leute, habe mal wieder eine Frage zu Reihenentwicklungen. Ich soll die Taylorreihe von [mm] \[\bruch{1}{z^{2}-7z+12}\] [/mm] um [mm] \[z_{0}=0\] [/mm] finden. Ich habe diese Funktion zuerst in Partialbrüche zerlegt:
[mm] \[\bruch{1}{z-4}-\bruch{1}{z-3}\] [/mm]
und habe nun die Reihen dieser beiden Partiabrüche bestimmt:
[mm] \[\bruch{1}{z-4}=-1/4-z/16-z^{2}/64...=\summe_{n=0}^{\infty}(-1)4^{-1-n}z^{n}\] [/mm]
und [mm] \[\bruch{1}{z-3}=-1/3-z/9-z^{2}/27...=\summe_{n=0}^{\infty}(-1)3^{-1-n}z^{n}\] [/mm]
Insgesamt ist die Taylorreihe dann
[mm] \[-7/12-25z/144-91z^{2}/1728...=\summe_{n=0}^{\infty}(-1)(12^{-1-n}(3^{n+1}+4^{n+1}))z^{n}\] [/mm]
Stimmt das soweit?

        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Mi 30.05.2012
Autor: MathePower

Hallo MaxPlanck,

> Hallo Leute, habe mal wieder eine Frage zu
> Reihenentwicklungen. Ich soll die Taylorreihe von
> [mm]\[\bruch{1}{z^{2}-7z+12}\][/mm] um [mm]\[z_{0}=0\][/mm] finden. Ich habe
> diese Funktion zuerst in Partialbrüche zerlegt:
>  [mm]\[\bruch{1}{z-4}-\bruch{1}{z-3}\][/mm]
>  und habe nun die Reihen dieser beiden Partiabrüche
> bestimmt:
>  
> [mm]\[\bruch{1}{z-4}=-1/4-z/16-z^{2}/64...=\summe_{n=0}^{\infty}(-1)4^{-1-n}z^{n}\][/mm]
>  und
> [mm]\[\bruch{1}{z-3}=-1/3-z/9-z^{2}/27...=\summe_{n=0}^{\infty}(-1)3^{-1-n}z^{n}\][/mm]
>  Insgesamt ist die Taylorreihe dann
> [mm]\[-7/12-25z/144-91z^{2}/1728...=\summe_{n=0}^{\infty}(-1)(12^{-1-n}(3^{n+1}+4^{n+1}))z^{n}\][/mm]
>  Stimmt das soweit?


Ja, das stimmt soweit.


Gruss
MathePower

Bezug
                
Bezug
Taylorreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 Mi 30.05.2012
Autor: MaxPlanck

Ok, und wie bestimmen ich den Konvergenzradius. Ich meine, ich kenne die Formel, aber aus irgenweinem Grund kann ich sie nicht richtig anwenden. Es ist klar, das der Konvergenzradius 3 ist, das genau der Kreis im Analytizitätsgebiet ist, aber ich brauche auch eine Rechnung.

Bezug
                        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Mi 30.05.2012
Autor: MathePower

Hallo MaxPlanck,

> Ok, und wie bestimmen ich den Konvergenzradius. Ich meine,
> ich kenne die Formel, aber aus irgenweinem Grund kann ich
> sie nicht richtig anwenden. Es ist klar, das der
> Konvergenzradius 3 ist, das genau der Kreis im
> Analytizitätsgebiet ist, aber ich brauche auch eine
> Rechnung.  


Den Konvergenzradius kannst Du hier z.B.
mit Hilfe des Quotientenkriteriums berechnen.

Bilde dazu den Quotient zweier aufeinanderfolgende Reihenglieder.


Gruss
MathePower

Bezug
                                
Bezug
Taylorreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Mi 30.05.2012
Autor: MaxPlanck

Das habe ich gemacht:
[mm] \[\limes_{n\rightarrow\infty}\bruch{(-1)12^{-1-n}(3^{n+1}+4^{n+1})}{(-1)12^{-n}(3^{n+2}+4^{n+2})}\] [/mm]
[mm] \[\limes_{n\rightarrow\infty}\bruch{(3^{n+1}+4^{n+1})}{12(3^{n+2}+4^{n+2})}\] [/mm]
Und wenn ich jetzt den Limes auswerte, kommt 1/48 raus. Hmmm. Wo ist der Fehler?


Bezug
                                        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Mi 30.05.2012
Autor: MathePower

Hallo MaxPlanck,


> Das habe ich gemacht:
> [mm]\[\limes_{n\rightarrow\infty}\bruch{(-1)12^{-1-n}(3^{n+1}+4^{n+1})}{(-1)12^{-n}(3^{n+2}+4^{n+2})}\][/mm]
>  
> [mm]\[\limes_{n\rightarrow\infty}\bruch{(3^{n+1}+4^{n+1})}{12(3^{n+2}+4^{n+2})}\][/mm]
>  Und wenn ich jetzt den Limes auswerte, kommt 1/48 raus.
> Hmmm. Wo ist der Fehler?
>  


Der zu untersuchende Ausdruck muss doch lauten:

[mm]\[\limes_{n\rightarrow\infty}\bruch{(-1)12^{-1-n}(3^{n+1}+4^{n+1})}{(-1)12^{-\red{2}-n}(3^{n+2}+4^{n+2})}\][/mm]


Dann steht hier:

[mm] \[\limes_{n\rightarrow\infty}\bruch{12*(3^{n+1}+4^{n+1})}{(3^{n+2}+4^{n+2})}\] [/mm]


Gruss
MathePower

Bezug
                                                
Bezug
Taylorreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Mi 30.05.2012
Autor: MaxPlanck

Aha. Das sehe ich noch nicht ganz. Für [mm] \[a_{n}\] [/mm] ist ja [mm] \[12^{-1-n}\], [/mm] als für [mm] \[a_{n+1}\] [/mm] dementsprechend [mm] \[12^{-1-n+1}=12^{-n}\]? [/mm] Aber ja, dann stimmt das Ergebnis.

Bezug
                                                        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Mi 30.05.2012
Autor: MathePower

Hallo MaxPlanck,



> Aha. Das sehe ich noch nicht ganz. Für [mm]\[a_{n}\][/mm] ist ja
> [mm]\[12^{-1-n}\],[/mm] als für [mm]\[a_{n+1}\][/mm] dementsprechend
> [mm]\[12^{-1-n+1}=12^{-n}\]?[/mm] Aber ja, dann stimmt das Ergebnis.


Hier sind die Klammern um n+1 zu setzen, vergessen worden:

[mm]12^{-1-\left(n+1\right)}=12^{-1-n-1}=12^{-2-n}[/mm]


Gruss
MathePower

Bezug
                        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Do 31.05.2012
Autor: fred97

Die von Dir ermittele Reihendarstellung von [mm] \bruch{1}{z-4} [/mm] konvergiert für |z|<4

Die von Dir ermittele Reihendarstellung von [mm] \bruch{1}{z-3} [/mm] konvergiert für |z|<3

Damit ist der gesuchte Konvergenzradius = 3

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]