Taylorreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
hab mal wieder ne frage ;)
also ich soll die fkt: [mm] \bruch{1}{x^2-2} [/mm] in eine taylorreiche 6. gerades um den punkt 0 entweickeln. da die ableitungen ziehmlich kompliziert sind, wollte ich die funktion in eine potenzreihe entwickeln.
haben das eigentlich immer so gemacht, dass wir es entweder duch differenzieren oder integriegen, oader duch substitution auf die geometische reihe [mm] \bruch{1}{1-x} [/mm] gebracht haben, aber irgentwie weiss ich hier nicht so wirklich den ansatz.
hoffe ihr könnt mir mal nen denkanstoß geben ;)
|
|
|
|
> hab mal wieder ne frage ;)
>
> also ich soll die fkt: [mm]\bruch{1}{x^2-2}[/mm] in eine
> taylorreiche 6. gerades um den punkt 0 entweickeln. da die
> ableitungen ziehmlich kompliziert sind, wollte ich die
> funktion in eine potenzreihe entwickeln.
Nur zu: das geht sehr gut.
>
> haben das eigentlich immer so gemacht, dass wir es entweder
> duch differenzieren oder integriegen, oader duch
> substitution auf die geometische reihe [mm]\bruch{1}{1-x}[/mm]
> gebracht haben, aber irgentwie weiss ich hier nicht so
> wirklich den ansatz.
>
[mm]\frac{1}{x^2-2}=\frac{1}{(x-\sqrt{2})\cdot(x+\sqrt{2})}=\frac{1}{2\sqrt{2}}\cdot\left[\frac{1}{x-\sqrt{2}}-\frac{1}{x+\sqrt{2}}\right][/mm]
Dann musst Du die Brüche [mm] $\frac{1}{x-\sqrt{2}}$ [/mm] und [mm] $\frac{1}{x+\sqrt{2}}$ [/mm] noch auf die Form [mm] $\frac{1}{1-q}$ [/mm] bringen, um die Potenzreihenentwicklung [mm] $\sum_{n=0}^\infty q^n$ [/mm] (geometrische Reihe) für [mm] $\frac{1}{1-q}$ [/mm] einsetzen zu können. Beim ersten Bruch erreichst Du dies durch Ausklammern von [mm] $-\frac{1}{\sqrt{2}}$, [/mm] ergibt [mm] $q=\frac{x}{\sqrt{2}}$, [/mm] beim zweiten durch Ausklammern von [mm] $\frac{1}{\sqrt{2}}$, [/mm] ergibt [mm] $q=-\frac{x}{\sqrt{2}}$. [/mm] Am Ende musst Du alle Koeffizienten für dieselbe Potenz von $x$ einsammeln, damit Du eine Reihe der Form [mm] $\sum_{n=0}^\infty a_n x^n$ [/mm] erhältst.
Da die Funktion [mm] $f(x)=\frac{1}{x^2-2}$ [/mm] gerade ist, müssen alle [mm] $a_n$ [/mm] für ungerades $n$ natürlich $=0$ sein.
|
|
|
|
|
ok super danke dir, werd mich mal dran versuchen
|
|
|
|
|
ich hab noch mal ne kleine rückfrage:
wenn ich beim 2. [mm] \bruch{1}{\wurzel{2}} [/mm] ausklammere bekomm ich doch insgesammt:
[mm] \bruch{1}{2\wurzel{2}}*[-\bruch{1}{\wurzel{2}}*\bruch{1}{1-\bruch{x}{\wurzel{2}}}+\bruch{1}{\wurzel{2}}*\bruch{1}{-1-\bruch{x}{\wurzel{2}}}] [/mm] richtig?
wenn ich beim 2. therm das minus mit unter den bruch ziehe, hab ich doch beidesmal minus als vorzeichen, da kann ich doch nie auf 1-x kommen oder?
|
|
|
|
|
Hallo!
Kann q nicht beliebig sein?
[mm] \bruch{1}{-1-\bruch{x}{\wurzel{2}}} [/mm] = [mm] \bruch{-1}{1+\bruch{x}{\wurzel{2}}} [/mm] = [mm] \bruch{-1}{1-\left(-\bruch{x}{\wurzel{2}}\right)}
[/mm]
Stefan.
|
|
|
|
|
> ich hab noch mal ne kleine rückfrage:
>
> wenn ich beim 2. [mm]\bruch{1}{\wurzel{2}}[/mm] ausklammere bekomm
> ich doch insgesammt:
>
> [mm]\bruch{1}{2\wurzel{2}}*[-\bruch{1}{\wurzel{2}}*\bruch{1}{1-\bruch{x}{\wurzel{2}}}+\bruch{1}{\wurzel{2}}*\bruch{1}{-1-\bruch{x}{\wurzel{2}}}][/mm]
> richtig?
>
> wenn ich beim 2. therm das minus mit unter den bruch ziehe,
> hab ich doch beidesmal minus als vorzeichen, da kann ich
> doch nie auf 1-x kommen oder?
Al-Chwarizmi hat schon darauf hingewiesen, dass es einen weit schlaueren Weg gibt, die geometrische Reihe einzusetzen. Nur der Vollständigkeit halber schreibe ich den unnötig mühsamen Weg über die Zerlegung, die ich angefangen hatte, noch hin:
[mm]\begin{array}{lcl}
\displaystyle\frac{1}{x^2-2} &=& \displaystyle\frac{1}{2\sqrt{2}}\cdot\left[\frac{1}{x-\sqrt{2}}-\frac{1}{x+\sqrt{2}}\right]\\
&=& \displaystyle\frac{1}{2\sqrt{2}}\cdot\left[-\frac{1}{\sqrt{2}}\cdot\frac{1}{1-\frac{x}{\sqrt{2}}}-\frac{1}{\sqrt{2}}\cdot\frac{1}{1-\left(-\frac{x}{\sqrt{2}}\right)}\right]\\
&=&\displaystyle -\frac{1}{4}\cdot\left[\sum_{n=0}^\infty \frac{1}{\sqrt{2}^n}x^n+\sum_{n=0}^\infty (-1)^n\frac{1}{\sqrt{2}^n}x^n\right]\\
&=&\displaystyle -\frac{1}{4}\cdot \sum_{n=0}^\infty \frac{2}{\sqrt{2}^{2n}}x^{2n}\\
&=&\displaystyle \sum_{n=0}^\infty \left(-\frac{1}{2^{n+1}}\right) x^{2n}
\end{array}[/mm]
.. aber natürlich tust Du gut daran, den Weg zu gehen, den Al-Chwarizmi vorgeschlagen hat. Das hier kann allenfalls als "Fingerübung" dienen.
|
|
|
|
|
[mm]\bruch{1}{x^2-2}=-\bruch{1}{2}*\bruch{1}{1-\bruch{x^2}{2}}=-\bruch{1}{2}*\left(1+\bruch{x^2}{2}+...\right)[/mm] !
Gruß
|
|
|
|