matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisTaylorreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Taylorreihe
Taylorreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Fr 09.06.2006
Autor: Fry

Aufgabe
Die Fkt [mm] \bruch{z}{sin z} [/mm] ist in z=0 holomorph fortsetzbar. Bestimmen Sie den Konvergenzradius der Taylorreihe um z=0.

Hallo ;)

Worin liegt genau der Unterschied zwischen der Taylorreihenentwicklung und der Potenzreihenentwicklung ? Eine Taylorreihe ist doch eine Potenzreihe...?
Wie kann ich jetzt an diese Aufgabe rangehen ?
Würde mich über Tiops freuen.

Fry

        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Sa 10.06.2006
Autor: felixf

Hallo Fry!

> Die Fkt [mm]\bruch{z}{sin z}[/mm] ist in z=0 holomorph fortsetzbar.
> Bestimmen Sie den Konvergenzradius der Taylorreihe um z=0.
>  
> Hallo ;)
>  
> Worin liegt genau der Unterschied zwischen der
> Taylorreihenentwicklung und der Potenzreihenentwicklung ?
> Eine Taylorreihe ist doch eine Potenzreihe...?

Fuer holomorphe Funktionen (oder allgemeiner, fuer analytische Funktionen) stimmen beide Konzepte ueberein.

>  Wie kann ich jetzt an diese Aufgabe rangehen ?

Erstmal musst du zeigen, dass die Funktion in $0$ holomorph ist. Nimm doch erstmal die Funktion $g(z) := [mm] \frac{\sin z}{z}$ [/mm] und setz die Reihenentwicklung von [mm] $\sin [/mm] z$ ein. Daran siehst du, dass $g$ durch eine Potenzreihe in $0$ beschreibbar ist, insofern ist $g$ um 0 herum holomorph. Jetzt musst du noch zeigen, dass $g$ in einer Umgebung von 0 keine Nullstelle hat; damit ist dann [mm] $\frac{z}{\sin z} [/mm] = [mm] \frac{1}{g(z)}$ [/mm] ebenfalls in einer Umgebung von 0 holomorph.

Zum Konvergenzradius: Wenn ihr genuegend viel Theorie hattet, dann ist das ganz einfach. Hattet ihr schon sowas in der Art?
Wenn $f : G [mm] \to \IC$ [/mm] holomorph ist und [mm] $B_r(z_0) \subseteq [/mm] G$ ist (Kugel mit Radius $r$ um [mm] $z_0$), [/mm] dann ist $f$ in $z = [mm] z_0$ [/mm] als Potenzreihe entwickelbar mit Konvergenzradius [mm] $\ge [/mm] r$. Und wenn $r$ maximal gewaehlt war, dass [mm] $B_r(z_0) \subseteq [/mm] G$ ist (fuer festes $G$ und [mm] $z_0$), [/mm] dann ist der Konvergenzradius genau $r$.
Wenn ja, bist du damit ganz schnell fertig ;-)

LG Felix


Bezug
        
Bezug
Taylorreihe: taylorreihenentwicklung
Status: (Frage) beantwortet Status 
Datum: 14:22 Mo 11.09.2006
Autor: xSina-

Aufgabe
wie erkläre ich die vorgehnsweisen der taylorreihenentwicklung ?

wie erkläre ich die vorgehnsweisen der taylorreihenentwicklung ?

Bezug
                
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:47 Di 12.09.2006
Autor: PStefan

Hi,

zuerst einmal ein herzlich [willkommenmr]

Die Taylorreihe approximiert sich an die ursprüngliche Funktion:

[mm] f(x)=f(x_{0})+\bruch{f'(x_{0})*(x-x_{0})}{1!}+\bruch{f''(x_{0})*(x-x_{0})^{2}}{2!}+..... [/mm]

Das berühmteste Beispiel lautet:
f(x)=Sin(x)            [mm] x_{0}=0 [/mm]

f(x)=Sin(x)                  f(0)=0
f'(x)=Cos(x)                f'(0)=1
f''(x)=-Sin(x)               f''(0)=0
f'''(x)=-Cos(x)             f'''(0)=-1
f''''(x)=Sin(x)               f''''(0)=0
f'''''(x)=Cos(x)             f'''''(0)=1

daher also:
[mm] f(x)=x-\bruch{x^{3}}{3!}+\bruch{x^{5}}{5!}...... [/mm]

Ich hoffe, dass ich dir helfen konnte

Gruß
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]