matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylorreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Taylorreihe
Taylorreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Sa 16.07.2016
Autor: Kruemelmonster2

Ich habe ein paar verständnisprobleme was Taylorreihen angeht.
Und zwar konvergiert die Taylorreihe (sofern sie überhaupt konvergiert) nicht zwangsläufig gegen ihre Funktion.

Dazu haben wir im Skript folgendes Beispiel betrachtet:

Sei [mm] $f:\IR\to \IR$ [/mm] mit

[mm] $f\left(x\right)=\begin{cases} e^{-\frac{1}{\left|x\right|}} & \text{für }x\not=0\\ 0 & \text{für }x=0 \end{cases}$ [/mm]

Nun folgt ein langer beweis, dass die Funktion [mm] $f^{(k+1)}(0)=0$ [/mm] ist.

Nun wird gesagt:

Daher hat $f $ bei $0$ die auf ganz [mm] $\IR$ [/mm] konvergente Taylor-Reihe:



[mm] $\sum_{k=0}^{n}\frac{f^{k}\left(0\right)}{k!}x^{k}=0$. [/mm]

Diese Taylorreihe stellt offensichtlich $f$ in keinem Punkt außer $0$ dar.

Soweit sogut.

Gilt [mm] $\underset{n\to\infty}{\lim}R_{x_{0}}^{n}f\left(x\right)=0$, [/mm] dann konverigert die Tylorreihe bei $x$ gegen $f(x)$



Nun gilt nach der Lagrange-Form des Restgliedes:

[mm] $R_{0}^n [/mm] f(x)= [mm] \frac{1}{(n+1)!} f^{(n+1)}(\xi) x^{n+1}$ [/mm] mit einem [mm] $\xi$ [/mm] zwischen $x$ und [mm] $x_0$. [/mm]

Hier muss ich zugeben, dass mir nicht ganz klar ist was "zwischen" bedeuten soll. [mm] $x_0$ [/mm] wäre bei dem Beispiel ja grade $0$.
x ist aber doch variable und kann alles sein. Heißt zwischen dann:

[mm] $\xi \in [/mm] (x,0) [mm] \vee \xi\in [/mm] (0, x)$ ?


Falls ja wäre ja


[mm] $R_{0}^n [/mm] f(x)= [mm] \frac{\pm p_n (\frac{1}{\xi})e^{-\frac{1}{|\xi|}}}{(n+1)!} x^{n+1} \to [/mm] 0$, da Fakultäten schneller wachsen als jede Potenz.

[mm] p_k [/mm] steht in dem Fall für ein geeignetes polynom und den Term [mm] $f^{(n)}=\pm p_n (\frac{1}{x})e^{-\frac{1}{|x|}} [/mm]

hatten wir als k-te Ableitung herausgefunden.

Was ist hier falsch?

Ich habe es so verstanden: Eine Taylorreihe konvergiert genau dann gegen die Funktion, wenn das Restglied gegen 0 geht. Dies ist aber hier der Fall. Die Taylorreihe stellt f aber nur in der 0 da.

Also gilt das ganze doch nicht. Oder habe ich was bei der Betrachtung des Restgleides falsch gemacht?

Ich wäre euch mega dankbar wenn mir jemand weiterhelfen könnte, da ich dort schon seit tagen drüber nachdenke und einfach nicht weiter komme.

Mfg. Krümmelmonster


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 02:20 So 17.07.2016
Autor: HJKweseleit


> Ich habe ein paar verständnisprobleme was Taylorreihen
> angeht.
>  Und zwar konvergiert die Taylorreihe (sofern sie
> überhaupt konvergiert) nicht zwangsläufig gegen ihre
> Funktion.
>  
> Dazu haben wir im Skript folgendes Beispiel betrachtet:
>  
> Sei [mm]f:\IR\to \IR[/mm] mit
>
> [mm]$f\left(x\right)=\begin{cases} e^{-\frac{1}{\left|x\right|}} & \text{für }x\not=0\\ 0 & \text{für }x=0 \end{cases}$[/mm]
>  
> Nun folgt ein langer beweis, dass die Funktion
> [mm]f^{(k+1)}(0)=0[/mm] ist.
>  
> Nun wird gesagt:
>  
> Daher hat [mm]f[/mm] bei [mm]0[/mm] die auf ganz [mm]\IR[/mm] konvergente
> Taylor-Reihe:
>  
>
>
> [mm]\sum_{k=0}^{n}\frac{f^{k}\left(0\right)}{k!}x^{k}=0[/mm].
>  
> Diese Taylorreihe stellt offensichtlich [mm]f[/mm] in keinem Punkt
> außer [mm]0[/mm] dar.
>  
> Soweit sogut.
>  
> Gilt
> [mm]\underset{n\to\infty}{\lim}R_{x_{0}}^{n}f\left(x\right)=0[/mm],
> dann konverigert die Tylorreihe bei [mm]x[/mm] gegen [mm]f(x)[/mm]
>  
>
>
> Nun gilt nach der Lagrange-Form des Restgliedes:
>  
> [mm]R_{0}^n f(x)= \frac{1}{(n+1)!} f^{(n+1)}(\xi) x^{n+1}[/mm] mit
> einem [mm]\xi[/mm] zwischen [mm]x[/mm] und [mm]x_0[/mm].
>  
> Hier muss ich zugeben, dass mir nicht ganz klar ist was
> "zwischen" bedeuten soll. [mm]x_0[/mm] wäre bei dem Beispiel ja
> grade [mm]0[/mm].
>  x ist aber doch variable und kann alles sein. Heißt
> zwischen dann:
>  
> [mm]\xi \in (x,0) \vee \xi\in (0, x)[/mm] ?


Ja.

Man kann eine Taylorreihe auch um einen anderen Punkt als 0 entwickeln, nennen wir ihn mal a (falls du das noch nicht kennst: Es ist nicht wichtig, jetzt zu wissen, wie man das macht und was das bedeutet). Das [mm] \xi [/mm] liegt dann irgendwo zwischen a und x einschließlich (wobei x dann auch eine Zahl sein kann), also in [a|x] oder in [x|a], je nachdem ob a>x oder x>a ist.


>  
>
> Falls ja wäre ja
>
>
> [mm]R_{0}^n f(x)= \frac{\pm p_k (\frac{1}{\xi})e^{-\frac{1}{|\xi|}}}{(n+1)!} x^{n+1} \to 0[/mm],
> da Fakultäten schneller wachsen als jede Potenz.
>  
> [mm]p_k[/mm] steht in dem Fall für ein geeignetes polynom und den
> Term [mm]$f^{(k)}=\pm p_k (\frac{1}{x})e^{-\frac{1}{|x|}}[/mm]
>  
> hatten wir als k-te Ableitung herausgefunden.

Ja, fast alles richtig.
Aber:

Du kennst das jeweilige Polynom nicht. Ich schreibe dir mal die ersten auf (aber nicht mit 1/x, sondern mit x als Argument):

[mm] p_0(x)=1 [/mm]

[mm] p_1(x)=\bruch{|x|}{x^3} [/mm]

[mm] p_2(x)=\bruch{(6x^2+1)|x|-6x^2}{x^7} [/mm]

[mm] p_3(x)= [/mm] - [mm] \bruch{(24x^2+12)|x|-36x^2-1}{x^8} [/mm]

[mm] p_4(x)= \bruch{(120x^4+120x^2+1)|x|-240x^4-20x^2}{x^{11}} [/mm]


Wenn du jetzt durch die entsprechende Fakultät dividierst, siehst du, dass in den Polynomen die Koeffizienten ebenfalls in etwa wie die Fakultäten wachsen und daher der Limes nicht gegen 0 geht, wenn man für x [mm] \xi [/mm] einsetzt.




>  
> Was ist hier falsch?
>  
> Ich habe es so verstanden: Eine Taylorreihe konvergiert
> genau dann gegen die Funktion, wenn das Restglied gegen 0
> geht. Dies ist aber hier der Fall. Die Taylorreihe stellt f
> aber nur in der 0 da.
>  
> Also gilt das ganze doch nicht. Oder habe ich was bei der
> Betrachtung des Restgleides falsch gemacht?
>  
> Ich wäre euch mega dankbar wenn mir jemand weiterhelfen
> könnte, da ich dort schon seit tagen drüber nachdenke und
> einfach nicht weiter komme.
>  
> Mfg. Krümmelmonster
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Mo 18.07.2016
Autor: Gonozal_IX

Hiho,

HJKweseleit hat dir zwar ein Beispiel gegeben, unter dessen Umständen deine Argumentation nicht stimmen muss, allerdings gilt in deinem Beispiel [mm] $p_n(x) \sim x^{2n}$. [/mm] Der Faktor vor dem höchsten Polynomterm ist also immer 1.

Warum passt deine Argumentation trotzdem nicht?

In deiner Betrachtung gehst du davon aus, dass für jedes Restglied [mm] $R_n$ [/mm] dasselbe [mm] $\xi$ [/mm] zur Beschreibung verwendet wird. Das stimmt aber im Allgemeinen gar nicht.

Das kannst du mal direkt versuchen für [mm] $R_5$,$R_6$ [/mm] und [mm] $R_7$ [/mm] zu verifizieren.

Korrekt wäre deine Gleichung also in der Form:

$ [mm] R_{0}^n [/mm] f(x)= [mm] \frac{\pm p_n (\frac{1}{\xi_n})e^{-\frac{1}{|\xi_n|}}}{(n+1)!} x^{n+1} \to [/mm] 0 $

Und du erkennst, dass der Grenzwert von der (möglicherweise nicht mal konvergenten) Folge [mm] $(\xi_n)_{n\in\IN}$ [/mm] abhängt.

Gruß,
Gono


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]