matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenTaylorpolynom sinx
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Taylorpolynom sinx
Taylorpolynom sinx < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom sinx: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Mo 25.08.2014
Autor: geigenzaehler

Aufgabe
f(x)=sin(x)

Taylorpolynom 1. Grades in Entw.pkt 0:

Tf(x,0)=x

Jetzt ist mir aufgefallen, dass das


Taylorpolynom 2. Grades in Entw.pkt 0 ebenfalls nur x ist.

Intuitiv haette ja irgendeine Parabel dazukommen müssen.

Andererseits, wenn ich mir den Graphen des sin in x=0 ansehe, ist da keine Annäherung durch eine normale Parabel naheliegend.

Kann man sich das so erklären, dass aus der Tatsache, dass sich der sin nahe x=0 wie eine ungerade Fktn verhält, folgt, dass im Taylorpolynom auch nur ungerade Potenzen vorkommen können? Wodurch folgen könnte, dass ein Taylorpolynom geradzahligen Grades keine bessere Naeherung bringen kann als das vorausgegangene Taylorpolynom ungerade Grades?



        
Bezug
Taylorpolynom sinx: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mo 25.08.2014
Autor: Fulla

Hallo geigenzaehler!

> f(x)=sin(x)

>

> Taylorpolynom 1. Grades in Entw.pkt 0:

>

> Tf(x,0)=x
> Jetzt ist mir aufgefallen, dass das

>
>

> Taylorpolynom 2. Grades in Entw.pkt 0 ebenfalls nur x ist.

>

> Intuitiv haette ja irgendeine Parabel dazukommen müssen.

>

> Andererseits, wenn ich mir den Graphen des sin in x=0
> ansehe, ist da keine Annäherung durch eine normale Parabel
> naheliegend.

>

> Kann man sich das so erklären, dass aus der Tatsache, dass
> sich der sin nahe x=0 wie eine ungerade Fktn verhält,

Der Sinus verhält sich nicht nur so - [mm] $\sin(x)$ [/mm] IST eine ungerade Funktion.

> folgt, dass im Taylorpolynom auch nur ungerade Potenzen
> vorkommen können? Wodurch folgen könnte, dass ein
> Taylorpolynom geradzahligen Grades keine bessere Naeherung
> bringen kann als das vorausgegangene Taylorpolynom ungerade
> Grades?

Ja, so in der Art....
Bei einer ungeraden Funktion wirst du auch nur ungerade Taylorpolynome bekommen (analog bei geraden Funktionen).
Bei der Taylorentwicklung tauchen die Ableitungen auf. Beim Sinus wechseln sich da Sinus und Kosinus ab. Im Entwicklungspunkt 0 fallen alle Sinusterme weg - das ist jeder zweite Term, bzw. die Terme mit geradzahligem Exponenten.


Lieben Gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]