matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylorpolynom 2. Grades
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Taylorpolynom 2. Grades
Taylorpolynom 2. Grades < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom 2. Grades: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:19 Fr 14.01.2011
Autor: BarneyStinson

Aufgabe
Gegeben sei die Funktion: f(x)=ln(1+(1/2)x)
a) Entwickeln Sie f in das Taylorpolynom zweiten Grades um x0=0

Hallo zusammen,
ich hoffe, ich habe das richtige Forum erwischt. Habe ein Problem, bei der obigen Aufgabe.
Das Ergebnis, welches bei meiner Taylorreihe rauskommen sollte, sollte ja zumindest näherungsweise 0 sein.
Mein Ergebnis nähert sich allerdings 0.242 an...

Hier meine Rechenschritte:

Ableitungen:
[mm] f(x)=ln1+(\bruch{1}{2})x [/mm]
[mm] f'(x)=\bruch{1}{(2+x)} [/mm]
[mm] f''(x)=-\bruch{1}{(2+x)^2} [/mm]

0 in die Ableitungen und Stammfunktion einsetzen:
f(0)=0
[mm] f'(0)=\bruch{1}{2} [/mm]
[mm] f''(0)=-\bruch{1}{4} [/mm]

Nun die Entwicklung des Taylorpolynoms:
[mm] T=0+\bruch{\bruch{1}{2}}{1!}*(\bruch{1}{2}-0)+\bruch{-\bruch{1}{4}}{2!}*(-\bruch{1}{4}-0)^2 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylorpolynom 2. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Fr 14.01.2011
Autor: schachuzipus

Hallo BarneyStinson und [willkommenmr],

> Gegeben sei die Funktion: f(x)=ln(1+(1/2)x)
> a) Entwickeln Sie f in das Taylorpolynom zweiten Grades um
> x0=0
> Hallo zusammen,
> ich hoffe, ich habe das richtige Forum erwischt. Habe ein
> Problem, bei der obigen Aufgabe.
> Das Ergebnis, welches bei meiner Taylorreihe rauskommen
> sollte, sollte ja zumindest näherungsweise 0 sein. [haee]
> Mein Ergebnis nähert sich allerdings 0.242 an... [kopfkratz3]

Was meinst du damit?

>
> Hier meine Rechenschritte:
>
> Ableitungen:
> [mm]f(x)=ln\red{\left(}1+(\bruch{1}{2})x\red{\right)}[/mm] [ok]

Auf die Klammern aufpassen!

> [mm]f'(x)=\bruch{1}{(2+x)}[/mm] [ok]
> [mm]f''(x)=-\bruch{1}{(2+x)^2}[/mm] [ok]
>
> 0 in die Ableitungen und Stammfunktion einsetzen:
> f(0)=0 [ok]
> [mm]f'(0)=\bruch{1}{2}[/mm] [ok]
> [mm]f''(0)=-\bruch{1}{4}[/mm] [ok]
>
> Nun die Entwicklung des Taylorpolynoms:
>
> [mm]T=0+\bruch{\bruch{1}{2}}{1!}*(\red{\bruch{1}{2}}-0)+\bruch{-\bruch{1}{4}}{2!}*(\red{-\bruch{1}{4}}-0)^2[/mm]

Da muss doch jeweils [mm]\red{x}[/mm] stehen!

[mm]T_{0,2}(x)=\sum\limits_{k=0}^{2}\frac{f^{(k)}(0)}{k!}\cdot{}x^k[/mm]

Also ergibt sich mit deiner richtigen Rechnung:

[mm]T_{0,2}(x)=\frac{1}{2}x-\frac{1}{8}x^2[/mm]

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
                
Bezug
Taylorpolynom 2. Grades: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:51 Fr 14.01.2011
Autor: BarneyStinson

Ahh super!
Das erklärt natürlich einiges...

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]