matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenTaylorpolynom
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Taylorpolynom
Taylorpolynom < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:08 Sa 15.05.2010
Autor: borsteline

Aufgabe
Für folgende Funktionen ermittle und skizziere man die Taylorpolynomeder Ordnung m in x0.
a) f(x)=sin(x)     m= 1,3,5
b) [mm] h(x)=cosh(x)=\bruch{1}{2}(e^x+e^{-x}) [/mm] m= 0,2,4

Hallo,
ich wollte mal fragen ob mir hier jemand behilflich sein kann bezüglich Taylorpolynome..

bei der Aufagbe a) hab ich folgendes raus: [mm] x-\bruch{x^3}{6})+\bruch{x^5}{120} [/mm]

ist das dann schon das endergebnis??
also für m= 1 : x, für m= [mm] 3:x-\bruch{x^3}{6} [/mm] und für m=5: [mm] x-\bruch{x^3}{6}+\bruch{x^5}{120} [/mm]

oder fehlt dann da noch was??


zur Aufgabe b) für m= 2: [mm] 1+\bruch{x^2}{2!}, [/mm] für m=4: [mm] 1+\bruch{x^2}{2!}+\bruch{x^4}{4!}+\bruch{x^6}{6!}.. [/mm]
für m=0 weiß ich leider auch nicht was da die Lösung ist.. denk aber mal die Ausgangsgleichung, da je keine Ableitung dann da ist???

Danke schonmal

        
Bezug
Taylorpolynom: Aufgabe (a)
Status: (Antwort) fertig Status 
Datum: 12:11 Sa 15.05.2010
Autor: Loddar

Hallo borsteline!


Ist denn ein konkretes [mm] $x_0$ [/mm] gegeben? Oder gilt [mm] $x_0 [/mm] \ = \ 0$ ?

Für diesen Spezialfall hast Du die Aufgabe (a.) korrekt gelöst.


Gruß
Loddar


Bezug
                
Bezug
Taylorpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Sa 15.05.2010
Autor: borsteline

ja xo=0

Bezug
        
Bezug
Taylorpolynom: Aufgabe (b)
Status: (Antwort) fertig Status 
Datum: 12:12 Sa 15.05.2010
Autor: Loddar

Hallo borsteline!


Auch hier gilt die Rückfrage zu [mm] $x_0$ [/mm] .


> zur Aufgabe b) für m= 2: [mm]1+\bruch{x^2}{2!},[/mm]

[ok]


> für m=4: [mm]1+\bruch{x^2}{2!}+\bruch{x^4}{4!}+\bruch{x^6}{6!}..[/mm]

Aufgepasst: hier ist der letzte Term zuviel.


>  für m=0 weiß ich leider auch nicht was da die Lösung
> ist.. denk aber mal die Ausgangsgleichung,

[notok] Wie sieht denn der Term mit [mm] $x^{\red{0}}$ [/mm] aus?


Gruß
Loddar


Bezug
                
Bezug
Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 Sa 15.05.2010
Autor: borsteline

ja auch bei b ist x0=0..

und der Term bei [mm] x^0=1???? [/mm]

Bezug
                        
Bezug
Taylorpolynom: richtig
Status: (Antwort) fertig Status 
Datum: 12:16 Sa 15.05.2010
Autor: Loddar

Hallo!


> und der Term bei [mm]x^0=1????[/mm]  

[ok] Genau.


Gruß
Loddar


Bezug
                                
Bezug
Taylorpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:19 Sa 15.05.2010
Autor: borsteline

dann danke ich ersteinmal..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]