matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylorpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Taylorpolynom
Taylorpolynom < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom: Kontrolle
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:54 Mi 21.05.2008
Autor: Surfer

Hallo, habe hier zwei Funktionen gegeben zum einen [mm] f:\IR\to\IR, x\mapsto x^{5}-x [/mm]  und als zweites [mm] g:\IR\to\IR, x\mapsto [/mm] sin(2x)

und für diese Funktionen sollen nun die Taylorpolynome [mm] T_{5}(f,x,1) [/mm] und [mm] T_4(g,x,\bruch{\pi}{4}) [/mm]  sowie die zugehörigen Restglieder berechnet werden!

Hab da jetzt mal für beide gemacht, zumindest die Taylorpolynomrechnung und folgendes erhalten:

also zunächst hab ich die Ableitungen gemacht und 1 fürs x eingesetzt:
f(x) = [mm] x^{5}-x \to [/mm] f(1) = 0
f´(x) = [mm] 5x^{4}-1 \to [/mm] f'(1) = 4
f´´(x) = [mm] 20x^{3} \to [/mm] f''(1) = 20
f´´´(x) = [mm] 60x^{2} \to [/mm] f´´´(1) = 60
f´´´´(x) = 120x [mm] \to [/mm] f´´´´(1) = 120
f´´´´´(x) = 120  [mm] \to [/mm] f´´´´´(1) = 120

wenn ich dies in die Taylorformel einsetzte und ausmultipliziere, erhalte ich wieder [mm] x^{5}-x [/mm] ? stimmt das?

bei der g(x) gehe ich genauso vor und erhalte am Schluss komisches:
= [mm] \bruch{2}{3}x^{4} [/mm] - [mm] \bruch{2}{3}\pi*x^{3} -\bruch{1}{4}\pi^2 *x^{2} [/mm] - [mm] \bruch{1}{24}\pi^3*x +1-\bruch{\pi}{4} [/mm] - [mm] \bruch{\pi^{2}}{32} [/mm] + [mm] \bruch{2\pi^{4}}{768} [/mm]

weiss jedoch nicht ob dies hier stimmt! außerdem weiss ich nicht wie man auf die Restglieder kommt?

lg Surfer


        
Bezug
Taylorpolynom: nicht ausmultiplizieren
Status: (Antwort) fertig Status 
Datum: 18:16 Mi 21.05.2008
Autor: Loddar

Hallo Surfer!


Du darfst das Polynom nicht ausmultiplizieren. Das ist ja selbstverständlich, dass bei einer ganzrationalen Funktion auch wieder dasselbe herauskommt.

Du sollst hier die Form $f(x) \ = \ [mm] a*(x-1)^0+b*(x-1)^1+c*(x-1)^2+...$ [/mm] erzeugen.


Gruß
Loddar


Bezug
                
Bezug
Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Mi 21.05.2008
Autor: Surfer

alos lasse ich stehen:

4(x-1) [mm] +10(x-1)^{2} +10(x-1)^{3} +5(x-1)^{4} +1(x-1)^{5} [/mm]

oder?

und wie komme ich dann auf das zugehörige Restglied?
lg und danke Surfer

Bezug
                        
Bezug
Taylorpolynom: richtig
Status: (Antwort) fertig Status 
Datum: 18:43 Mi 21.05.2008
Autor: Loddar

Hallo Surfer!


> alos lasse ich stehen:
>  
> 4(x-1) [mm]+10(x-1)^{2} +10(x-1)^{3} +5(x-1)^{4} +1(x-1)^{5}[/mm]

[ok] Richtig!


> und wie komme ich dann auf das zugehörige Restglied?

Gibt es denn ein Restglied? Du hast ja selber festgestellt, dass durch Ausmultiplizieren die Ausgangsfunktion entsteht.


Gruß
Loddar


Bezug
                                
Bezug
Taylorpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 Mi 21.05.2008
Autor: Surfer

ok es gibt kein restglied! normalerweise wird dies doch mithilfe der in diesem falle sechsten ableitung bestimmt und diese ist ja gleich Null, also gibt es kein restglied!

wie ist das bei meinem zweiten beispiel?

lg Surfer

Bezug
        
Bezug
Taylorpolynom: zur 2. Aufgabe
Status: (Antwort) fertig Status 
Datum: 19:19 Mi 21.05.2008
Autor: Loddar

Hallo Surfer!


Auch hier nicht ausmultiplizieren, sondern in der Form $g(x) \ = \ [mm] a*\left(x-\bruch{\pi}{4}\right)^0+b*\left(x-\bruch{\pi}{4}\right)^1+c*\left(x-\bruch{\pi}{4}\right)^2+...$ [/mm] darstellen.


Gruß
Loddar


Bezug
                
Bezug
Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Mi 21.05.2008
Autor: Surfer

ok dann hätte ich ja:
g(x) = [mm] 1-\bruch{1}{2}(x-\bruch{\pi}{4})^{2} +\bruch{2}{3}(x-\bruch{\pi}{4})^{4} [/mm]

und wie komme ich hier zum restglied?
lg Surfer und danke für deine hilfe

Bezug
                        
Bezug
Taylorpolynom: Korrektur + Link
Status: (Antwort) fertig Status 
Datum: 19:48 Mi 21.05.2008
Autor: Loddar

Hallo Surfer!


Ich erhalte vor der ersten Klammer aber $-2_$ .



Für das Restglied [mm] $R_n(x)$ [/mm] gilt []folgende Formel:
[mm] $$R_n(x) [/mm] \ = \ [mm] \integral_{a}^{x}{\bruch{(x-t)^n}{n!}*f^{(n+1)}(t) \ dt}$$ [/mm]
Hier gilt also $a \ = \ [mm] \bruch{\pi}{4}$ [/mm] sowie $n \ = \ 5$ .


Gruß
Loddar


Bezug
                                
Bezug
Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Mi 21.05.2008
Autor: Surfer

Ok also ich habe jetzt folgende Formel genommen:

[mm] R_n (x)=\bruch{f^{n+1}*(\varepsilon)}{(n+1)!}*(x-a)^{n+1} [/mm]

für die fünfte Ableitung erhalte ich ja f´´´´´(x)= -32cos(2x) das gibt mit  [mm] \bruch{\pi}{4} [/mm] eingesetzt [mm] f````´(\bruch{\pi}{4})= [/mm] 0

wenn ich dies jetzt in meine Formel zur Restgliedbestimmung einsetzte erhalte ich: [mm] R_n [/mm] (x)= [mm] \bruch{0*(\varepsilon)}{5!}*(x- \bruch{\pi}{4})^{5} [/mm]

oder stimmt hier mal wieder was nicht?

lg Surfer

Bezug
                                        
Bezug
Taylorpolynom: 6. Ableitung
Status: (Antwort) fertig Status 
Datum: 20:02 Mi 21.05.2008
Autor: Loddar

Hallo Surfer!


Da wir hier bereits [mm] $T_{\red{5}}(x)$ [/mm] berechnet haben, musst Du für das Restglied die 6. Ableitung verwenden (denn aus $n \ = \ 5$ folgt auch $n+1 \ = \ 6$ !).


Gruß
Loddar


Bezug
                                                
Bezug
Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mi 21.05.2008
Autor: Surfer

aber bei dieser aufgabe ist doch [mm] T_4 [/mm] zu bestimmen,das habe ich ja auch gemacht, dann muss ich doch zur bestimmung vom restglied nur noch die 5 ableitung machen! ein grad höher als das polynom oder?

siehe Aufgabenstellung oben!
lg Surfer

Bezug
                                                        
Bezug
Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Mi 21.05.2008
Autor: schachuzipus

Hallo Surfer,

ja du hast Recht , s. meinen anderen post, das war ein bissl zuviel Gas gegeben von Loddar ;-)

LG

schachuzipus

Bezug
                                                        
Bezug
Taylorpolynom: Wer lesen kann, ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Mi 21.05.2008
Autor: Loddar

Hallo Surfer!


Okay, das hatte ich überlesen. Ich dachte, beide Aufgaben sollen bis zum 5. Glied berechnet werden ... so kann es halt gehen mit mehreren unterschiedlichen Aufgaben in einen Thread.


Gruß
Loddar


Bezug
                                        
Bezug
Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Mi 21.05.2008
Autor: schachuzipus

Hallo Surfer,


entgegen Loddars Ansicht, bin ich der Meinung, in der Aufgabenstellung steht, dass du für die Funktion g das Taylorpolynom 4-Ordnung, also [mm] $T_4$ [/mm] berechnen sollst, und folglich die (4+1)te=5te Ableitung brauchst

> Ok also ich habe jetzt folgende Formel genommen:
>  
> [mm]R_n (x)=\bruch{f^{n+1}*(\varepsilon)}{(n+1)!}*(x-a)^{n+1}[/mm]

Hier ist gemeint: die (n+1)te Ableitung an der Stelle [mm] \varepsilon, [/mm] nicht "mal" !!

Also [mm] $f^{(n+1)}(\varepsilon)$ [/mm]

Das [mm] $\varepsilon$ [/mm] ist aus dem (offenen) Intervall $(a,x)$

>  
> für die fünfte Ableitung erhalte ich ja f´´´´´(x)=
> -32cos(2x) das gibt mit  [mm]\bruch{\pi}{4}[/mm]

Hier ist das "-" zuviel, es ist [mm] $\sin^{(5)}(2x)=32\cos(2x)$ [/mm]

> eingesetzt [notok]

Nicht einsetzen!

> [mm]f''''´(\bruch{\pi}{4})=[/mm] 0
>  
> wenn ich dies jetzt in meine Formel zur Restgliedbestimmung
> einsetzte erhalte ich: [mm]R_n[/mm] (x)=
> [mm]\bruch{0*(\varepsilon)}{5!}*(x- \bruch{\pi}{4})^{5}[/mm]
>  
> oder stimmt hier mal wieder was nicht?

Das Restglied [mm] $R_5$ [/mm] ist also [mm] $\frac{32\cos(\varepsilon)}{5!}\cdot{}\left(x-\frac{\pi}{4}\right)^5$ [/mm] mit [mm] $\varepsilon\in \left(\frac{\pi}{4},x\right)$ [/mm]

>  
> lg Surfer


Gruß

schachuzipus

Bezug
                                                
Bezug
Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Mi 21.05.2008
Autor: Surfer

und was passiert mit den 2x aus der Klammer? die werden durch das [mm] \varepsilon [/mm] ersetzt?

lg Surfer

Bezug
                                                        
Bezug
Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 Mi 21.05.2008
Autor: leduart

Hallo
genauer muss da [mm] 2\epsilon [/mm] stehen, einfach der fktswert an einer geeigneten Stelle im Intervall.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]