matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationTaylorpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Taylorpolynom
Taylorpolynom < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:54 So 11.02.2007
Autor: Engel-auf-Wolke

Aufgabe
Berechnen Sie das zweite Taylorpolynom zu f(x) = [mm] x^{4}-2x^{3}+3 [/mm] bei [mm] x_{0} [/mm] = 1!

Das habe ich gemacht!

[mm] P_{2}(x) [/mm] = [mm] f(x_{0}) [/mm] + [mm] \bruch{f'(x_{0})}{1!}(x-x_{0})^{1} [/mm] + [mm] \bruch{f''(x_{0})}{2!}(x-x_{0})^{2} [/mm]

= -4 + [mm] \bruch{(-2)}{1!}(x-1)^{1} [/mm] + [mm] \bruch{0}{2!}(x-1)^{2} [/mm]
= -4 + [mm] (-2)(x-1)^{1} [/mm] + [mm] 0(x-1)^{2} [/mm]
= -4 + (-2x+2)
= -2x-2

Ist das so richtig? Ich bin mir bei der zweiten Ableitung nicht sicher.
Wie genau schreibt man das Taylorpolynom auf? Lässt man -4 + [mm] (-2)(x-1)^{1} [/mm] + [mm] 0(x-1)^{2} [/mm] stehen oder rechnet es man noch bis zum Schluss aus? Oder ist das völlig egal?

Danke!
Lg


Ich habe diese Aufgaben in keinem anderen Foren gestellt.


        
Bezug
Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 So 11.02.2007
Autor: Bastiane

Hallo!

> Berechnen Sie das zweite Taylorpolynom zu f(x) =
> [mm]x^{4}-2x^{3}+3[/mm] bei [mm]x_{0}[/mm] = 1!
>  Das habe ich gemacht!
>  
> [mm]P_{2}(x)[/mm] = [mm]f(x_{0})[/mm] + [mm]\bruch{f'(x_{0})}{1!}(x-x_{0})^{1}[/mm] +
> [mm]\bruch{f''(x_{0})}{2!}(x-x_{0})^{2}[/mm]
>  
> = -4 + [mm]\bruch{(-2)}{1!}(x-1)^{1}[/mm] + [mm]\bruch{0}{2!}(x-1)^{2}[/mm]
>  = -4 + [mm](-2)(x-1)^{1}[/mm] + [mm]0(x-1)^{2}[/mm]
>  = -4 + (-2x+2)
>  = -2x-2
>  
> Ist das so richtig? Ich bin mir bei der zweiten Ableitung
> nicht sicher.

Also, die zweite Ableitung ist [mm] f''(x)=12x^2-12x. [/mm] Damit gilt dann in der Tat f''(1)=0 und somit fällt der ganze Term weg. Allerdings hast du dich wohl bei f(1) verrechnet, ich erhalte da: [mm] f(1)=1-2+3=2\not=-4. [/mm] Damit erhältst du dann am Ende 4-2x.
Allerdings ist das eine seltsame Aufgabe, denn wenn der Term zweiter Ordnung wegfällt, ist das ja das gleiche, als wenn man nur das erste Taylorpolynom berechnen würde. Aber ist entweder ein Fehler in der Aufgabenstellung oder Absicht. :-)

>  Wie genau schreibt man das Taylorpolynom auf? Lässt man -4
> + [mm](-2)(x-1)^{1}[/mm] + [mm]0(x-1)^{2}[/mm] stehen oder rechnet es man
> noch bis zum Schluss aus? Oder ist das völlig egal?

Ich würde es bis zum Ende ausrechnen. Das heißt, wenn du einen Term hättest [mm] (x-1)^4 [/mm] oder so, dann kannst du das ruhig so stehen lassen, aber alles was wegfällt, weil es mit 0 multipliziert wird, würde ich auf jeden Fall wegschmeißen. Und das Ganze so zusammenschreiben, dass es nach Polynom aussieht, also so weit möglich die einzelnen Potenzen von x zusammenfassen. Und Klammern "hoch 1" ist ja eh unsinnig, da kann man den Exponenten auch weglassen und die Klammer auflösen. :-)

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Taylorpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 So 11.02.2007
Autor: Engel-auf-Wolke

Aufgabe
Berechnen Sie das Taylorpolynom zweiten Grades der Funktion x [mm] \mapsto \wurzel[3]{1000+x} [/mm] und bestimmen Sie damit nährungsweise [mm] \wurzel[3]{1001} [/mm] und [mm] \wurzel[3]{999.3}. [/mm]

Immer diese blöden Rechenfehlter. Aber danke für die Korrektur. Dann hab ich das Prinzip ja verstanden.

Aber nun zu dieser Aufgabe:

Also Imprinzip das gleiche wie vorhin. Aber irgendwie fehlt mir das [mm] x_{0} [/mm] oder sollen das [mm] \wurzel[3]{1001} [/mm] und [mm] \wurzel[3]{999.3} [/mm] sein?
Das kann ich mir aber nicht vorstellen.
Wenn ich mir also nun [mm] x_{0} [/mm] = 0 wähle dann erhalte ich das folgende Taylorpolynom:
[mm] P_{2}(x) [/mm] = [mm] -\bruch{1}{900000}x^{2}+\bruch{1}{300}x+10 [/mm]

Ist das nun richtig? Oder muss ich das für [mm] x_{0} [/mm] = 1 bestimmen? Gibt es da eine Grundregel. Z.B. ist [mm] x_{0} [/mm] immer 0, wenn nichts anderes vorgegeben ist?

Danke!
Lg

Ich habe diese Aufgabe in keinem anderen Forum gestellt.

Bezug
                        
Bezug
Taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 Di 13.02.2007
Autor: angela.h.b.


> Berechnen Sie das Taylorpolynom zweiten Grades der Funktion
> x [mm]\mapsto \wurzel[3]{1000+x}[/mm] und bestimmen Sie damit
> nährungsweise [mm]\wurzel[3]{1001}[/mm] und [mm]\wurzel[3]{999.3}.[/mm]
>  Immer diese blöden Rechenfehlter. Aber danke für die
> Korrektur. Dann hab ich das Prinzip ja verstanden.
>  
> Aber nun zu dieser Aufgabe:
>  
> Also Imprinzip das gleiche wie vorhin. Aber irgendwie fehlt
> mir das [mm]x_{0}[/mm] oder sollen das [mm]\wurzel[3]{1001}[/mm] und
> [mm]\wurzel[3]{999.3}[/mm] sein?
> Das kann ich mir aber nicht vorstellen.
>  Wenn ich mir also nun [mm]x_{0}[/mm] = 0 wähle dann erhalte ich das
> folgende Taylorpolynom:
>  [mm]P_{2}(x)[/mm] = [mm]-\bruch{1}{900000}x^{2}+\bruch{1}{300}x+10[/mm]
>  
> Ist das nun richtig?

Hallo,

das ist richtig.


> Oder muss ich das für [mm]x_{0}[/mm] = 1
> bestimmen?

Nein, der Entwicklungspunkt [mm] x_0=0 [/mm] ist hier völlig richtig in Anbetracht dessen, was Du als nächstes damit tun sollst, nämlich das näherungsweise Berechnen der beiden Wurzeln, also f(-0.7) und f(1). Du solltest ja nur ein Taylorpolynom aufstellen, da ist es naheliegend, einen Entwicklungspunkt zu nehmen, der für beises befriedigende Ergebnisse erwarten läßt.

Hattest Du eine Näherung für [mm] \wurzel[3]{2000} [/mm] und für [mm] \wurzel[3]{2007}gesucht, [/mm] hättest Du sicher einen anderen Entwicklungspunkt gewählt.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]