matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylorentwicklung -2 Variablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Taylorentwicklung -2 Variablen
Taylorentwicklung -2 Variablen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung -2 Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:56 Mi 14.03.2012
Autor: Strawberry1

Aufgabe
Unter Verwendung bekannter TAYLOR-Polynome bestimme man das TAYLOR-sche Polynom [mm] P_3 [/mm] der Funktion

[mm] f(x,y)=e^x \cos y [/mm]

im Entwicklungspunkt [mm] P(0,0) [/mm]

Hallo!
Bei dieser eigentlich einfachen Aufgabe habe ich folgendes Problem:

Also ich weiß ja, dass die Taylorreihen für die Exponentialfunktion (in einer Variablen also für [mm] e^x [/mm]) mit

[mm] P_n=\summe_{k=0}^{n}\bruch{x^k}{k!} [/mm]

bzw. für [mm] \cos x [/mm] mit

[mm] P_n=\summe_{k=0}^{n}\bruch{(-1)^k}{(2k)!} x^{2k} [/mm]

vereinfacht anschreiben kann.

Nun verstehe ich jedoch nicht, wie ich das Ganze auf mein Beispiel umlegen kann. Denn nach 2 Variablen wird ja anders entwickelt als nach einer. Bzw. hier benötige ich ja immer die Partiellen Ableitungen... **Verwirrung**

Natürlich könnte ich bei diesem Beispiel einfach alle Partiellen Ableitungen (bis zum Grad 3) bilden und in die Allgemeine Formel zur TAYLOR-Entwicklung einsetzen und würde ebenfalls schnell zum richtigen Ergebnis gelangen, nur das ist eben nicht gefragt.

Ich hoffe jemand kann mir helfen.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Taylorentwicklung -2 Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 Mi 14.03.2012
Autor: korbinian

Hallo,
ich vermute, das geht mit der Produktformel von Cauchy
Gruß  korbinian

Bezug
        
Bezug
Taylorentwicklung -2 Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Mi 14.03.2012
Autor: fred97

Du kannst auch übers Komplexe gehen:

Mit   z=x+iy ist

$e^xcos(y)= [mm] Re(e^z)= Re(\summe_{k=0}^{\infty}\bruch{z^k}{k!} [/mm] )= [mm] \summe_{k=0}^{\infty}\bruch{Re(z^k)}{k!} [/mm] $

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]