matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikTaylorentwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "HochschulPhysik" - Taylorentwicklung
Taylorentwicklung < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:19 So 29.11.2009
Autor: waruna

Ich habe solcher Wurzel:
[mm] \wurzel{1+(\bruch{z+d}{R})^{2}} [/mm]
und will gucken was wird passieren, wenn |z|<d.
In Musterloesung haben sie das so entwickelt:
[mm] 1+\bruch{1}{2}(\bruch{z+d}{R})^{2} [/mm]
habe ich aber keine Achnung, wie sie das erhalten haben. Welche Entwicklungspunkt soll ich eigentlich in der Formel fur Taylorreihe nutzen?

        
Bezug
Taylorentwicklung: Potenzreihenentwicklung
Status: (Antwort) fertig Status 
Datum: 10:07 So 29.11.2009
Autor: Infinit

Hallo waruna,
so wie die Terme aussehen, hat man hier eine Potenzreihenentwicklung nach dem ersten Glied abgebrochen
$$ [mm] \wurzel{1+x} [/mm] = 1 + [mm] \bruch{1}{2} [/mm] x - [mm] \bruch{1}{8} x^2 [/mm] + [mm] \bruch{3}{48}x^3 [/mm] ..... $$ und für x den Bruch eingesetzt.
Viele Grüße,
Infinit

Bezug
        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 So 29.11.2009
Autor: HJKweseleit

Wenn du nur 2 Glieder in der Entwicklung brauchst, kannst du folgenden Ansatz machen:

Falls [mm] (\bruch{z+d}{R})^{2} [/mm] deutlich kleiner als 1 ist, gibt die Wurzel ja nicht viel mehr als 1. Also sagst du:

[mm]\wurzel{1+(\bruch{z+d}{R})^{2}} = 1 + x[/mm].

Nun quadrierst du beide Seiten und erhältst (bin. Formel!)

[mm]1+(\bruch{z+d}{R})^{2} = 1 + 2x + x^2[/mm].

Da [mm] x^2 [/mm] vermutlich noch viel kleiner ist als 2x, machst du nun einen kleinen Fehler, indem du [mm] x^2 [/mm] weglässt. Daraus ergibt sich sofort

[mm] (\bruch{z+d}{R})^{2} [/mm] = 2x und somit

[mm] (\bruch{z+d}{R})^{2}/2 [/mm] = x.

Somit [mm]\wurzel{1+(\bruch{z+d}{R})^{2}} = 1 + (\bruch{z+d}{R})^{2}/2[/mm].

Den Fehler, den du gemacht hast, lässt sich dadurch korrigieren, dass du nach Taylor weitere Glieder berechnest und ihn dadurch korrigierst. Der Fehler ist um so größer, je mehr der Wert von [mm] (\bruch{z+d}{R})^{2} [/mm] sich dem Wert von 1 nähert.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]