matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesTaylorentwicklung+Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Taylorentwicklung+Konvergenz
Taylorentwicklung+Konvergenz < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung+Konvergenz: korrektur
Status: (Frage) beantwortet Status 
Datum: 20:09 Sa 16.02.2013
Autor: Laura87

Aufgabe
a)Geben sie die taylorentwicklung der Funktion [mm] f:]0,\infty[ [/mm] -> [mm] \IR: f(x)=\bruch{1}{x} [/mm] im Punkt 1 an und bestimmen sie ihren Konvergenzradius.

Hinweis sie dürfen verwenden, dass [mm] f_{n}(x)=\bruch{n!(-1)^n}{x^{n+1}} [/mm] für x>0 und n [mm] \in \IN [/mm]

b)Wir betrachten die Funktion [mm] f_n: \IR->\IR: f_n(x)=\bruch{sin(nx)}{n} [/mm] für alle n [mm] \in \IN. [/mm] Zeigen Sie, dass die Folge [mm] (f_n)n\in \IN [/mm] gleichmäßig gegen 0 konvergiert aber die FOlge der Ableitungen nicht einmal punktweise gegen 0 konvergiert
b)

Hallo,

ich habe mit der a) angefangen würde mich über eine Korrektur sehr freuen.

Als erstes schauen wir uns einpaar Ableitungen an

[mm] f(x)=\bruch{1}{x} [/mm]

f(1)=1

[mm] f'(x)=\bruch{-1}{x^2} [/mm]
f'(1)=-1

[mm] f''(x)=\bruch{2}{x^3} [/mm]
f''(1)=2

[mm] f^{3}(x)=\bruch{-6}{x^4} [/mm]
f^(3)(1)=-6

[mm] f^{4}(x)=\bruch{24}{x^5} [/mm]
f^(4)(1)=24

Dies setzen wir in die Formel der Taylorreihe ein:

[mm] f(x)=1-1x+\bruch{2}{2!}x^2-\bruch{6}{3!}x^3+\bruch{24}{4!}x^4+...+\bruch{f^{(n)}(n)}{n!}x^n [/mm]

Jetzt können wir erkennnen, dass die n-te Ableitung gegeben ist durch

[mm] f(x)=\summe_{n=0}^{\infty} (-1)^n \bruch{n!}{n!}x^n [/mm]

das muss ich noch mit Induktion beweisen oder?

Ist ansonsten alles richtig? Könnte ich das zum Beispiel in der Klausur genau so hinschreiben (natürlich mit dem Beweis durch Induktion)?

Vielen dank im Voraus

Lg

        
Bezug
Taylorentwicklung+Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Sa 16.02.2013
Autor: schachuzipus

Hallo Laura87,


> a)Geben sie die taylorentwicklung der Funktion [mm]f:]0,\infty[[/mm]
> -> [mm]\IR: f(x)=\bruch{1}{x}[/mm] im Punkt 1 an und bestimmen sie
> ihren Konvergenzradius.
>  
> Hinweis sie dürfen verwenden, dass
> [mm]f_{n}(x)=\bruch{n!(-1)^n}{x^{n+1}}[/mm] für x>0 und n [mm]\in \IN[/mm]
>  
> b)Wir betrachten die Funktion [mm]f_n: \IR->\IR: f_n(x)=\bruch{sin(nx)}{n}[/mm]
> für alle n [mm]\in \IN.[/mm] Zeigen Sie, dass die Folge [mm](f_n)n\in \IN[/mm]
> gleichmäßig gegen 0 konvergiert aber die FOlge der
> Ableitungen nicht einmal punktweise gegen 0 konvergiert
>  b)
>  Hallo,
>  
> ich habe mit der a) angefangen würde mich über eine
> Korrektur sehr freuen.
>  
> Als erstes schauen wir uns einpaar Ableitungen an

Wozu? Ist ja im Übungssinne nicht verkehrt, aber wozu die Mühe?

Im Hinweis steht doch dick und fett, dass du verwenden kannst, dass die n-te Ableitung von der Form [mm]f^{(n)}(x)=\frac{(-1)^n\cdot{}n!}{x^{n+1}}[/mm] ist ...

Das musst du nur noch an der Stelle [mm]x_0=1[/mm] auswerten, was ja nicht schwer ist ...

> [mm]f(x)=\bruch{1}{x}[/mm]
>  
> f(1)=1
>  
> [mm]f'(x)=\bruch{-1}{x^2}[/mm]
>  f'(1)=-1
>  
> [mm]f''(x)=\bruch{2}{x^3}[/mm]
>  f''(1)=2
>  
> [mm]f^{3}(x)=\bruch{-6}{x^4}[/mm]
>  f^(3)(1)=-6
>  
> [mm]f^{4}(x)=\bruch{24}{x^5}[/mm]
>  f^(4)(1)=24
>  
> Dies setzen wir in die Formel der Taylorreihe ein:
>  
> [mm]f(x)=1-1x+\bruch{2}{2!}x^2-\bruch{6}{3!}x^3+\bruch{24}{4!}x^4+...+\bruch{f^{(n)}(n)}{n!}x^n[/mm]
>  
> Jetzt können wir erkennnen, dass die n-te Ableitung
> gegeben ist durch
>  
> [mm]f(x)=\summe_{n=0}^{\infty} (-1)^n \bruch{n!}{n!}x^n[/mm]

Nein, das ist nicht die n-te Ableitung, die steht oben!

>  
> das muss ich noch mit Induktion beweisen oder?
>  
> Ist ansonsten alles richtig? Könnte ich das zum Beispiel
> in der Klausur genau so hinschreiben (natürlich mit dem
> Beweis durch Induktion)?

Nein, das ist Quark! Zum einen steht die n-te Ableitung oben im Hinweis, zum anderen sollst du die Funktion um [mm]x_0=1[/mm] entwickeln.

Die Taylorreihe lautet: [mm]\sum\limits_{n\ge 0}\frac{f^{(n)}(1)}{n!}\cdot{}(x-1)^n[/mm]  [mm](\star)[/mm]

[mm]f^{(n)}(x)[/mm] hast du gegeben, daraus berechne allg. [mm]f^{(n)}(1)[/mm] und setze in die Formel [mm](\star)[/mm] ein.

>  
> Vielen dank im Voraus
>  
> Lg

Gruß

schachuzipus


Bezug
        
Bezug
Taylorentwicklung+Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Sa 16.02.2013
Autor: fred97

Alternativ:


[mm] \bruch{1}{x}=\bruch{1}{1-(1-x)}. [/mm]

Jetzt geometrische Reihe.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]