matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisTaylor Restglied Abschätzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Taylor Restglied Abschätzung
Taylor Restglied Abschätzung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor Restglied Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Sa 15.02.2014
Autor: onkelfreddy

6Hallo!

Ich hänge mal wieder bei der Restgliedabschätzung von Taylorpolynomen....

gegeben ist: f: (-1, [mm] \infty) [/mm] -> R    f(x)=ln(2x+2)
ß
So T(3,0)(x)= ln(2)+x-1/2 x² + 1/3 x³

Das Restglied dazu sieht dann wie folgt aus:
f⁽⁴⁾= -6/(x+1)⁴
-> R3(x)=1/24 * [mm] f⁽⁴⁾(\varepsilon) [/mm] *x⁴, mit [mm] \varepsilon [/mm] im Intervall [0,x]

Und nun zu meinem Problem:
ich soll nun x>0 bestimmen, für das folgendes gilt:

|T3(x)-f(x)| [mm] \le [/mm] 1/100

nun stünde da nun f-T3 wäre das ja einfach nur R3, aber es steht ja T3-f

Wie gehe ich da nun vor?

Also wenn ich nun esteinmal T3 und f einsetze erhalte ich ja folgendes:

|ln(2)+x-1/2 x² + 1/3 x³ -ln(2x+2)| [mm] \le [/mm] 1/100

Aber wirklich weiter weiß ich nun auch nicht...

Vielen Danke für  die Hilfe!


        
Bezug
Taylor Restglied Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Sa 15.02.2014
Autor: fred97

[mm] |T_3(x)-f(x)|=|R_3(x)| [/mm]

FRED

Bezug
                
Bezug
Taylor Restglied Abschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:11 Sa 15.02.2014
Autor: onkelfreddy


oh ist das doch so rum $ [mm] |T_3(x)-f(x)|=|R_3(x)| [/mm] $ ? Ich dachte die ganze Zeit es wäre genau anders herum $ [mm] |(x)-T_3(x)|=|R_3(x)| [/mm] $
....

Bezug
                        
Bezug
Taylor Restglied Abschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Sa 15.02.2014
Autor: schachuzipus

Hallo,

>

> oh ist das doch so rum [mm]|T_3(x)-f(x)|=|R_3(x)|[/mm] ? Ich dachte
> die ganze Zeit es wäre genau anders herum
> [mm]|(x)-T_3(x)|=|R_3(x)|[/mm]
> ....

Das ist doch betraglich Jacke wie Hose...

[mm]|a-b|=|(-1)\cdot{}(b-a)|=|(-1)|\cdot{}|b-a|=1\cdot{}|b-a|=|b-a|[/mm] ...

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]