matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationTaylor Entwicklung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Taylor Entwicklung
Taylor Entwicklung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor Entwicklung: reziproke abstand
Status: (Frage) beantwortet Status 
Datum: 18:23 So 09.11.2008
Autor: pedro88

Aufgabe
Entwickeln sie den reziproken abstand [mm] f(\vec{r})=\bruch{1}{|\vec{r}-\vec{a}|} [/mm] in eine taylor-reihe um den punkt [mm] \vec{x_{o}} [/mm] = [mm] \vec{0} [/mm] bis zum term erster ordnung in [mm] (\vec{r}-\vec{r_{0}}) [/mm]

hey,

kann mir jemand bei dieser aufgabe helfen? haben überhaupt keine ahnung wie man das macht. war in der letzten stunde nicht da un jetzt kann ich die übung net machen. wäre für hilfe sehr dankbar

gruß pedro

        
Bezug
Taylor Entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Mo 10.11.2008
Autor: rainerS

Hallo!

Ich habe deine Frage in ein Forum der Analysis verschoben.

> Entwickeln sie den reziproken abstand
> [mm]f(\vec{r})=\bruch{1}{|\vec{r}-\vec{a}|}[/mm] in eine
> taylor-reihe um den punkt [mm]\vec{x_{o}}[/mm] = [mm]\vec{0}[/mm] bis zum
> term erster ordnung in [mm](\vec{r}-\vec{r_{0}})[/mm]
>  hey,
>  
> kann mir jemand bei dieser aufgabe helfen? haben überhaupt
> keine ahnung wie man das macht. war in der letzten stunde
> nicht da un jetzt kann ich die übung net machen. wäre für
> hilfe sehr dankbar

Du sollst die Funktion

[mm] f(\vec{r})=\bruch{1}{|\vec{r}-\vec{a}|} = \bruch{1}{\wurzel{(\vec{r}-\vec{a})^2}} [/mm]

in eine Taylorreihe entwickeln. Ist dir klar, wie so eine Taylorreihe in mehreren Variablen aussieht? Ich schreibe mal die ersten Terme hin:

[mm] f(\vec{r}) = f(\vec{r}_0) + \summe_{i=1}^n \bruch{df(\vec{r})}{dr_i} (r_i -r_{0,i}) + \dots = f(\vec{r}_0) + (\nabla f(\vec{r})) * (\vec{r}-\vec{r_{0}}) + \dots [/mm]

Du musst also erst einmal die Ableitungen ausrechnen.

  Viele Grüße
    Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]