matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylor-Reihe per Potenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Taylor-Reihe per Potenzreihe
Taylor-Reihe per Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor-Reihe per Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 Fr 21.08.2009
Autor: Chuny

Aufgabe
Finden Sie die Taylor-Reihe der folgenden Funktionen jeweils um den angegebenen Punkt [mm] x_0: [/mm]
(b) [mm]f(x) = (x+1)e^x, x_0=1[/mm]

Hallo zusammen!

Ich habe diese Aufgabe über die Ableitungen gelöst und bin auf folgendes Resultat gekommen:
[mm]Tf(x;1)=\summe_{n=0}^{\infty}\bruch{e(n+2)}{n!}(x-1)^n[/mm]

Ich glaube, dass sollte auch stimmen :)


Jetzt würde ich es aber lieber über die Potenzreihe lösen, nur leider komme ich bei einem Punkt nicht weiter. Hier mal meine einzelnen Schritte.
[mm]x_0=1 \Rightarrow f(x+1) = (x+2)e^{x+1}=e(x+2)e^x=e(x+2)\summe_{n=0}^{\infty}\bruch{x^n}{n!}=e(\summe _{n=0}^{\infty}(\bruch{x^{n+1}}{n!})+\summe_{n=0}^{\infty}(2\bruch{x^n}{n!})) = e\summe_{n=0}^{\infty}\bruch{x^{n+1}+2x^n}{n!}=\summe_{n=0}^{\infty}\bruch{e(x+2)}{n!}x^n [/mm]

Das sieht ja schon fast wie das Resultat aus ;-) Nachher muss ich noch von f(x+1) nach f(x) kommen, das ist ja dann kein Problem, aber das x in der Klammer bei e(x+2) stört. Nach meiner ersten Lösung, müsste dort ein n stehen und dann hätte ich es ^^ Aber wie gelange ich dort hin?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

greeeeetz
Marco

        
Bezug
Taylor-Reihe per Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Fr 21.08.2009
Autor: Leopold_Gast

[mm]\sum_{n=0}^{\infty} \frac{x^{n+1}}{n!} = \sum_{n=1}^{\infty} \frac{x^n}{(n-1)!} \, , \ \ \ \sum_{n=0}^{\infty} 2 \frac{x^n}{n!} = 2 + \sum_{n=1}^{\infty} 2 \frac{x^n}{n!}[/mm]

Bezug
                
Bezug
Taylor-Reihe per Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:42 Fr 21.08.2009
Autor: Chuny

Danke! Damit hat es geklappt^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]