matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenTaylor-Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Taylor-Polynom
Taylor-Polynom < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor-Polynom: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:57 Di 23.04.2013
Autor: piriyaie

Aufgabe
Geben Sie die Taylor-Reihe von cos(2x) um den Entwicklungspunkte [mm] x_{0}=0 [/mm] an. Wie können Sie aus der Taylorreihe für cos(x) erhalten?

Hallo,

ich möchte obige aufgabe lösen. Irgendwie kommt mir der zweite Satz komisch vor. Glaube irgendein gramatikalischer fehler XD.

Auf jeden fall möchte ich diese Taylorreihe angeben. Aber wie?

Verwende ich da irgendeine Formel? Was muss ich genau machen??

Danke schonmal.

Grüße
Ali

        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Di 23.04.2013
Autor: chrisno

Da scheint im zweiten Satz "diese" zu fehlen. "Wie können Sie diese aus ...."
Ansonsten offenbare mal Deinen Wissenstand.
Wenn er noch sehr gering ist, geh mal im Internet auf Formeljagd und tippe hier ein, was Du erlegt hast.

Bezug
                
Bezug
Taylor-Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Di 23.04.2013
Autor: piriyaie

Also ich würde ja gerne diese Formel verwenden:

$ [mm] f(x)=\summe_{k=0}^{n}\bruch{f^{(k)}(a)}{k!}\cdot{}(x-a)^{k}+R_{n+1}(x) [/mm] $

Aber das geht ja nicht, da ich den Grad des Taylorpolynomes nicht kenne...

Oder ist diese Formel ganz falsch?

lg
ali

Bezug
                        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Di 23.04.2013
Autor: schachuzipus

Hallo,


> Also ich würde ja gerne diese Formel verwenden:

>

> [mm]f(x)=\summe_{k=0}^{n}\bruch{f^{(k)}(a)}{k!}\cdot{}(x-a)^{k}+R_{n+1}(x)[/mm]

Das ist die Formel für ein Taylorpolynom vom Grad n (mit Restglied)

Da du eine Taylorreihe angeben sollst, nimm [mm] $\sum\limits_{k=0}^{\red{\infty}}\frac{f^{(k)}(a)}{k!}\cdot{}(x-a)^k$ [/mm]

Bei dir ist [mm] $a=x_0=0$, [/mm] damit vereinfacht sich die Formel etwas...


>

> Aber das geht ja nicht, da ich den Grad des Taylorpolynomes
> nicht kenne...

>

> Oder ist diese Formel ganz falsch?

>

> lg
> ali

Gruß

schachuzipus

Bezug
                                
Bezug
Taylor-Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Mi 24.04.2013
Autor: piriyaie

Ok. Dann wäre es so:

[mm] \summe_{k=0}^{\infty} \bruch{cos(0)^{(k)}}{k!}*(x-0)^{k} [/mm]

Aber wie setze ich jetzt das [mm] \infty [/mm] ein???

Eine andere Idee von mir wäre:

cos(0) ist ja 1 und 1 hoch egal was ist immernoch 1. Und das ganze jetzt dividiert durch " [mm] \infty! [/mm] " ist fast 0 und fast 0 multipliziert mit egal was ist wiederrum fast 0. Somit ist die Taylorreihe = 0.

richtig? falsch? totaler schmarn?

Danke schonmal.

Grüße
Ali

Bezug
                                        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Mi 24.04.2013
Autor: fred97


> Ok. Dann wäre es so:
>  
> [mm]\summe_{k=0}^{\infty} \bruch{cos(0)^{(k)}}{k!}*(x-0)^{k}[/mm]
>  
> Aber wie setze ich jetzt das [mm]\infty[/mm] ein???
>  
> Eine andere Idee von mir wäre:
>  
> cos(0) ist ja 1 und 1 hoch egal was ist immernoch 1. Und
> das ganze jetzt dividiert durch " [mm]\infty![/mm] " ist fast 0 und
> fast 0 multipliziert mit egal was ist wiederrum fast 0.
> Somit ist die Taylorreihe = 0.
>  
> richtig? falsch? totaler schmarn?

Totaler Schmarn !!!

Es ist cos(x)= [mm] \summe_{n=0}^{ \infty}(-1)^n*\bruch{x^{2n}}{(2n)!} [/mm]

das ist die Taylorreihe von Cosinus im Entwicklungspunkt [mm] x_0=0 [/mm]

Setze nun für das x einfach 2x ein. Dann hast Du die Taylorreihe von cos(2x) im Entwicklungspunkt [mm] x_0=0 [/mm]

FRED

>  
> Danke schonmal.
>  
> Grüße
>  Ali


Bezug
                                                
Bezug
Taylor-Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Mi 24.04.2013
Autor: piriyaie


> > Ok. Dann wäre es so:
>  >  
> > [mm]\summe_{k=0}^{\infty} \bruch{cos(0)^{(k)}}{k!}*(x-0)^{k}[/mm]
>  
> >  

> > Aber wie setze ich jetzt das [mm]\infty[/mm] ein???
>  >  
> > Eine andere Idee von mir wäre:
>  >  
> > cos(0) ist ja 1 und 1 hoch egal was ist immernoch 1. Und
> > das ganze jetzt dividiert durch " [mm]\infty![/mm] " ist fast 0 und
> > fast 0 multipliziert mit egal was ist wiederrum fast 0.
> > Somit ist die Taylorreihe = 0.
>  >  
> > richtig? falsch? totaler schmarn?
>  
> Totaler Schmarn !!!

Stimmt. Es ist ja eine Reihe gefragt!!! :-(

>  
> Es ist cos(x)= [mm]\summe_{n=0}^{ \infty}(-1)^n*\bruch{x^{2n}}{(2n)!}[/mm]
>  
> das ist die Taylorreihe von Cosinus im Entwicklungspunkt
> [mm]x_0=0[/mm]
>  
> Setze nun für das x einfach 2x ein. Dann hast Du die
> Taylorreihe von cos(2x) im Entwicklungspunkt [mm]x_0=0[/mm]

Eingesetzt sieht es nun so aus:

[mm] cos(2x)=\summe_{n=0}^{\infty}*(-1)^{n}*\bruch{(2x)^{2n}}{2n!} [/mm]

Soll ich einfach nur das hinschreiben und fertig?

>  
> FRED
>  >  
> > Danke schonmal.
>  >  
> > Grüße
>  >  Ali
>  

Danke.

Grüße
Ali

Bezug
                                                        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Mi 24.04.2013
Autor: Al-Chwarizmi


> [mm]cos(2x)=\summe_{n=0}^{\infty}*(-1)^{n}*\bruch{(2x)^{2n}}{2n!}[/mm]
>  
> Soll ich einfach nur das hinschreiben und fertig?


Hi Ali,

ich würde noch einen kleinen Schritt weiter gehen
und angeben, wie der Koeffizient [mm] a_k [/mm] in der
Taylorreihe

      $\ [mm] cos(2\,x)\ [/mm] =\ [mm] \summe_{k=0}^{\infty}a_k\,*x^k$ [/mm]

aus dem Index k zu bestimmen ist.

LG ,   Al-Chw.

Bezug
                                                                
Bezug
Taylor-Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Mi 24.04.2013
Autor: piriyaie


> >
> [mm]cos(2x)=\summe_{n=0}^{\infty}*(-1)^{n}*\bruch{(2x)^{2n}}{2n!}[/mm]
>  >  
> > Soll ich einfach nur das hinschreiben und fertig?
>  
>
> Hi Ali,
>  
> ich würde noch einen kleinen Schritt weiter gehen
>  und angeben, wie der Koeffizient [mm]a_k[/mm] in der
>  Taylorreihe
>  
> [mm]\ cos(2\,x)\ =\ \summe_{k=0}^{\infty}a_k\,*x^k[/mm]
>  
> aus dem Index k zu bestimmen ist.

also so:

[mm] \summe_{k=0}^{\infty}\bruch{(-1)^{n}}{2n!}*(2x)^{2n} [/mm]

???

Ist das so richtig?

>  
> LG ,   Al-Chw.

Grüße
Ali

Bezug
                                                                        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Mi 24.04.2013
Autor: schachuzipus

Hallo Ali,

> > >
> >
> [mm]cos(2x)=\summe_{n=0}^{\infty}*(-1)^{n}*\bruch{(2x)^{2n}}{2n!}[/mm]

Das ist falsch! Du arbeitest zu ungenau bzw. sehr schlampig ...

Das macht das Helfen arg anstrengend. Alles muss 1000fach wiederholt werden.

Schaue nochmal, welche Reihe genau dir Fred schon servierfertig dargeboten hat.


> > >
> > > Soll ich einfach nur das hinschreiben und fertig?
> >
> >
> > Hi Ali,
> >
> > ich würde noch einen kleinen Schritt weiter gehen
> > und angeben, wie der Koeffizient [mm]a_k[/mm] in der
> > Taylorreihe
> >
> > [mm]\ cos(2\,x)\ =\ \summe_{k=0}^{\infty}a_k\,*x^k[/mm]
> >
> > aus dem Index k zu bestimmen ist.

>

> also so:

>

> [mm]\summe_{k=0}^{\infty}\bruch{(-1)^{n}}{2n!}*(2x)^{2n}[/mm]

>

> ???

>

> Ist das so richtig?

Nein, das ist kompletter Unfug. Du summierst unendlich oft einfach nur einen konstanten Term auf.

Das ist nicht die Taylorreihe für [mm]\cos(2x)[/mm]

Was Al meinte, war, dass du die 2 noch aus dem [mm](2x)^{2k}[/mm] rausziehen sollst, damit du [mm]a_k\cdot{}x^{2k}[/mm] bzw. [mm]a_k%5Ccdot%7B%7D%5Cleft(x%5E2%5Cright)%5Ek[/mm] schlussendlich in der Reihe stehen hast.

Aber es steht hier alles schon im thread.

Lies alles nochmal gründlich durch und fasse dein Ergebnis nochmal sorgfältig zusammen.

Dann können wir das gerne absegnen ...


> Grüße
> Ali

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]