Tautologie beweisen < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 19:39 Sa 01.03.2014 | Autor: | ne1 |
Aufgabe | [mm] $\varphi [/mm] (x)$, [mm] $\psi(x)$ [/mm] seien beliebige Aussagen Beweise [mm] $\forall x(\varphi(x) \wedge \psi(x)) \Leftrightarrow \forall [/mm] x [mm] \varphi(x) \wedge \forall [/mm] x [mm] \psi [/mm] (x)$. |
Meiner Meinung nach ist [mm] $\Leftrightarrow$ [/mm] hier falsch.
Beweis:
[mm] $\forall x(\varphi(x) \wedge \psi(x)) \Leftrightarrow$ [/mm]
[mm] $D_{\varphi \wedge \psi} [/mm] = [mm] X\Leftrightarrow$
[/mm]
[mm] $D_{\varphi} \cap D_{\psi} [/mm] = X$
???
[mm] $D_{\varphi} [/mm] = X [mm] \wedge D_{\psi} [/mm] = X [mm] \Leftrightarrow$
[/mm]
[mm] $\forall [/mm] x [mm] \varphi(x) \wedge \forall [/mm] x [mm] \psi [/mm] (x)$
Es muss also gelten $A=C [mm] \wedge [/mm] B=C [mm] \Leftrightarrow [/mm] A [mm] \cap [/mm] C = B$. Man kann leicht zeigen, dass es nur für [mm] $\Rightarrow$, [/mm] für [mm] $\Leftarrow$ [/mm] lautet ein Gegenbeispiel $A = [mm] \{1,2\}, [/mm] B= [mm] \{2,3\}, C=\{2\}$ [/mm] also ist die Äquivalenz falsch.
Ist die Aufgabe falsch und habe ich Recht oder sind meine Überlegungen falsch?
Sorry, habe vergessen, dass $A$ und $B$, [mm] $\subseteq [/mm] C$ also muss ich gleich nochmal überlegen.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:50 Sa 01.03.2014 | Autor: | ne1 |
Bitte als grün markieren.
$A [mm] \subseteq [/mm] C [mm] \wedge [/mm] B [mm] \subseteq [/mm] C [mm] \Rightarrow [/mm] (A [mm] \cap [/mm] B = C [mm] \Rightarrow [/mm] A = C [mm] \wedge [/mm] B =C)$.
Zu zeigen ist $A [mm] \subseteq [/mm] C$, [mm] $C\subseteq [/mm] A$, $B [mm] \subseteq [/mm] C$, $C [mm] \subseteq [/mm] B$. Alles folgt sehr einfach aus der ersten sowie der zweiten Voraussetzung.
|
|
|
|